
1

Seamless design of smart edge processors

GRANT AGREEMENT NUMBER: 101070374

Deliverable D5.5

Initial Memory management and allocation for ULP accelerators

2

Title of the deliverable Memory management and allocation for ULP accelerators

WP contributing to the deliverable WP 5

Task contributing to the deliverable Task 5.4 and Task 5.6

Dissemination level PU - Public

Due submission date 30/04/2024

Actual submission date 30/04/2024

Author(s)
Christos Lamprakos [ICCS]

Sotirios Xydis [ICCS]

Internal reviewers
Mottaqiallah Taouil [TUD]

Bram Verhoef [AXE]

3

Document
Version

Date Change

V0.1 12.04.2024 Initial document

V0.2 18.04.2024 Submitted for internal review

V0.9 26.04.2024 Reviewers’ feedback incorporated

V1.0 29.04.2024 Ready to submit version

V1.1 30.04.2024 Project coordinators’ feedback incorporated.

4

Contents

Deliverable Summary 4
1. Introduction 5
2. Related Work 7
3. Background 8
4. idealloc 8
 4.1 Intuition 8
 4.2 Final Placement Derivation 9
 4.3 Performance and Scalability 10
 4.4 Quality Stochasticity 10
5. Evaluation 11
6. Integration with the CONVOLVE Compiler 13
7. Conclusion 13
8. References 14

Deliverable Summary
Memory management is important for machine learning kernels due to the large amount of
data transfers. Memory management in the context of machine learning accelerators is split
in two parts: (i) planning and (ii) runtime data transfer management. The planning part is
further divided into bufferization, i.e., assigning memory buffers to tensors, and offset
assignment, i.e., placing each of the distinct buffers to contiguous chunks of on-chip
memory. This document describes our work on the offset assignment front, which is
orthogonal to both the bufferization and data transfer parts.

To this end, we present (i) a survey of existing solutions from the state-of-the-art, (ii) a high-
level description of our offset assignment agent, (iii) an empirical comparison between our
agent and the aforementioned related work, and (iv) a list of the tasks remaining to
completion of the whole memory management flow.

In its current state, our solution outperforms most of the state-of-the-art with respect to
memory footprint. Work to also make our offset assignment agent fast is in progress, and
opens exciting research directions. Integration with CONVOLVE’s compiler is
straightforward, though not yet done.

5

1. Introduction
The immense popularity of neural networks coupled to their ever increasing size deems
optimal memory handling a vital component of any machine learning (ML) pipeline. This
holds true regardless of where a model is deployed: memory is an equally valuable resource
in the Cloud and in a constrained edge device.

In the context of ML compilers, memory optimization is a two-stage process. A network
described as a sequence of layers, each layer node operating on and emitting tensors, is
first scheduled--that is, independent computation chunks are identified and destined for
simultaneous execution. The CONVOLVE compiler shall utilize STREAM to analyze and guide
decisions for that purpose [1].

Figure 1: A conceptual overview of CONVOLVE’s compilation process,
and memory management’s place therein.

The derived schedule is then lowered from tensor operations to accelerator-specific ones.
A part of said lowering decides and keeps track of which memory buffers hold the data of
which tensor, with the overall goal of keeping the total number of tensors to a minimum.
This step, called bufferization, concludes the first stage of memory optimization.

6

Bufferization is usually conducted independently of the next stage [2], [3], but synergistic
approaches do exist [4], [5]. At the time of writing this deliverable, CONVOLVE plans to keep
bufferization and offset assignment separate, but its infrastructure is such that future
attempts towards combined memory management remain feasible (if such attempts are
viewed as an iterative process repeatedly invoking existing parts).

Buffers are annotated with lifetimes, i.e., moments of logical time between which a buffer
is considered “live”. Temporally overlapping buffers must remain spatially disjoint, while
non-overlapping ones may share the same memory space. As long as the compiler has a
concrete definition of logical time, this lifetime analysis is trivial; an indirect consequence
of the scheduling and bufferization steps, given the network’s static architecture.

The final sequence of lifetime-annotated buffers is the input of memory optimization’s last
stage. In the literature it comes by many names: buffer allocation [6], static memory
allocation [7], static memory planning [8], [9], memory layout optimization [4], offset
assignment [10]. We will be using the terms “buffer allocation” and “offset assignment”
interchangeably, though the essence remains the same: each buffer receives an address
space offset during that analysis, its goal being to utilize as little memory as possible.

Deliverable D5.2 presents the work conducted by ICCS in the context of offset assignment.
Integration with the rest of CONVOLVE’s compiler is left as a task for the final memory
management deliverable. Scheduling is already handled by STREAM, while bufferization is
merely an off-the-shelf MLIR transformation. As will be shown later, even in its current
state, our buffer allocator outperforms the vast majority of the state-of-the-art with
respect to memory footprint.

Figure 2: A more detailed map of work done in WP5. The scope of deliverable D5.2 is marked in red.

7

2. Related Work
To emphasize offset assignment’s relevance to real-world ML deployments, we structure
this section according to the various frameworks and compilers used in production. We
shall conclude with academic works that are not yet in production but bear strong
resemblance to our topic.

XLA [11]: an open-source compiler developed by Google, used by popular frameworks such
as PyTorch [12], TensorFlow [13] and JAX [14]. The offset assignment algorithm followed by
XLA focuses on speed rather than memory efficiency, since it relies on simple best-fit
placement of the buffers after it has sorted them by lifetime1.

TFLite [15]: a specialized version of TensorFlow tailored to embedded devices and
microcontrollers. There are five different memory allocation algorithms available in TFLite:
greedy-by-size, greedy-by-breadth, greedy-in-order, strip packing, and minimum-cost flow
[16]. This variety is reflected on different footprint/latency trade-offs2.

TVM [17]: open-source compiler maintained by the Apache Foundation and targeting a wide
array of accelerator backends such as CPUs, GPUs, even FPGAs. TVM also employs more
than one buffer allocator: greedy-by-size, greedy-by-conflict, and a hillclimb version
alternating between the former two3.

MindSpore [18]: an open-source framework developed by Huawei Technologies, targeting
CPUs, GPUs and the Ascend NPU. MindSpore addresses an extended version of offset
assignment for training networks in parallel on the same accelerator. The core logic remains
identical to most other works: apply some sorting to the buffer sequence, and then place
them with an either first- or best-fit heuristic. Due to the requirement for parallel training,
these algorithms are enriched by the notion of safety [10]4.

Triton [19]: a GPU focusing compiler and IR adopted by OpenAI. Triton uses a linear-time
storage allocation algorithm formulating the problem as interval graph coloring5.

Two more works that have ended up being integrated in XLA are TelaMalloc [6] and
minimalloc [7]. Both of them use rectangle packing as their problem formulation--in line
with our own allocator. Rectangle packing for memory allocation is known to be NP-hard, so

1 github.com/openxla/xla/blob/main/xla/service/memory_space_assignment/best_fit_repacker.cc
2 github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/delegates/gpu/common/memory_management
3 github.com/apache/tvm/tree/main/src/tir/usmp/algo
4github.com/mindspore-
ai/mindspore/tree/5f329d13e3154083d7ee03afd544be64d5d4b765/mindspore/ccsrc/backend/common/somas
5 github.com/openai/triton/blob/a791746de8f49c99c9e4cc2bf21f6eb639dbf07d/lib/Analysis/Allocation.cpp

8

both algorithms devise their own heuristics: TelaMalloc an ML-assisted ILP program, and
minimalloc a lattice theory isomorphism.

3. Background
The research described in this document utilizes the formulation of static memory
allocation as an instance of two-dimensional rectangle (or bin) packing. Let us now
elaborate on this abstraction.

As stated earlier, the memory requirements of a neural
network’s inference stage are viewed as a set of
lifetime-annotated buffers. Each buffer is a rectangle in
a 2D space where the vertical axis represents the
accelerator’s address space and the horizontal axis
denotes logical time. The allocator may slide rectangles
up and down, the operation standing for different offset
assignments; it cannot, however, slide them sideways.
Buffers are also restricted from overlapping vertically.

Figure 3: A rectangle packing example.

Rectangle packing algorithms place buffers in such a way in order to minimize the resulting
placement’s makespan, i.e., the largest offset occupied by any buffer. The problem is NP-
hard and although it has been extensively studied in the theoretical computer science
literature, solution optimality is still at quest. If we define a placement’s load as the
maximum sum of simultaneously live buffers--in other words a lower bound for the ideal
placement, the state-of-the-art algorithm, guarantees solutions at most (2 + 𝜖) times
bigger than the load [20].

4. idealloc
We have created idealloc, an implementation of the state-of-the-art rectangle packing
algorithm originally described in [20]. Its design has been published in extensive detail as
an open-access research paper [21]. This section presents the main key points; we more
than encourage curious readers to consult our paper.

4.1 Intuition

In its original paper, the algorithm is demonstrated as a series of theorems and corollaries,
each proved by construction. Each next theorem builds on top of the previous ones, starting
from elementary cases with, e.g., restrictions on the possible sizes of treated buffers, and

9

culminating to a general solution. Our implementation is nothing more than a translation of
each proof into source code.

Figure 4: A placement derived by idealloc for one of minimalloc’s production-grade TPU benchmarks.

The cornerstone operation introduced in the very first lemma of [20] is boxing: groups of
buffers are boxed together into larger rectangles that are themselves viewed as buffers by
the algorithm. For instance, a boxing of buffers A and C in Figure 3 is a rectangle of height 3
and lifetime spanning from 0 to 6. Most of the algorithm can be seen as an iterative boxing
process with nested recursions--on a high level.

When a specific criterion regarding the ratio of the formed boxes’ minimum and maximum
heights is met, the algorithm has converged.

4.2 Final Placement Derivation

Boxing is only the first part of our implementation. It yields a set of boxes which therefore
contain boxes and so on until some level where only original buffers reside. In the second
part, we iteratively unbox and place until we reach that base level.

10

One final part deals with the fact that after all the unboxing is done, the initially derived
placement is pretty sparse--this is probably owed to the algorithm’s theoretical needs
toward formal guarantees. We compensate for this sparsity with a “tightening” pass.

4.3 Performance and Scalability
Contrary to our original publication,
idealloc does not suffer neither from high
latency nor from Out-Of-Memory (OOM)
killers. We have made several
enhancements in order to be able to deal
with arbitrarily large buffer sets (in the order
of millions).

A simple example is that the original version
was making new objects in memory to
represent the contents of each new box:
thus one buffer had as many clones on the
heap as boxes it belonged to, which, due to
the recursive nature of the boxing
procedure, was consuming exponential
DRAM amounts. We are currently storing
pointer vectors instead, thus keeping
memory consumption linear to the number
of boxes.

Figure 5: High-level boxing schematic. Recursion marked
in purple, and random point selection in blue.

4.4 Quality Stochasticity

In the deliverable summary we mention that we are still trying to make idealloc faster; yet
the last subsection boasts that it’s behaving fine latency-wise. This contradiction is owed
to the--as of yet undisclosed--stochastic nature of the boxing algorithm. We try to illustrate
what we mean in Figure 5.

Recall that the whole process may be viewed as iterative nested recursions. In the figure we
have marked recursion nodes (Theorems 2 and 16) in purple. Theorem 2 also exhibits a
randomness component: more precisely, given a subset of boxes and a time horizon, the
algorithm must select a random point in that interval under the constraint that at least one
buffer is live at that moment. This detail makes idealloc inherently stochastic, since we

11

have observed that different point selections yield different placement makespans.
Moreover, each “move” made affects the moves available in the next stage.

Thus, idealloc doesn’t suffer from high latency as long as we run the algorithm only once,
i.e., as long as a single sequence of random moves is made. But our early experiments
showed that yielding the best possible placements in a single iteration is unlikely (see next
section). Our current remedy is thus to run idealloc a high enough number of times in order
to be certain that a broad area of the search space has been covered. We recently realized
that our case is a single-player game: each random moment selection instance may be
viewed as a node in a search tree. To this end, we are in the process of implementing Monte
Carlo Tree Search [22] towards reducing total iterations.

5. Evaluation
To test our allocator’s performance, we performed an offline, i.e., not integrated to some
ML framework, comparison of idealloc’s performance against the state-of-the-art
solutions presented in the Related Work section.

More specifically, we isolated the allocator source code of each compiler and fed it with the
open-source TPU benchmarks of the minimalloc repo.

Figure 6: A subset of our memory footprint measurements normalized to each benchmark’s load.

12

Then we gave the same benchmarks as inputs to our
implementation, which we executed repeatedly 1
million times. We were interested in answering the
following research questions:

● how do we perform against the state-of-the-art
with respect to memory footprint?
● how do we perform against the best allocator
memory-wise with respect to single-iteration
execution time?

Figure 6 answers the first question. We have kept only
the two hardest benchmarks (J, K) in order for it to
remain as informative and easy-to-read as possible.

The numbers are normalized to the benchmarks’ lower bound,
i.e., their load. We observe that idealloc stays within a 20-
40% range from the theoretical optimum (while, quite
impressively, minimalloc consistently achieves it). The two
next-best allocators, MindSpore and TVM hillclimb, perform
very close to our implementation. This pattern was consistent
across all 11 benchmarks. In 7 out of the total 11 cases, only
minimalloc beat our implementation. This sparked our
second research question, to which we now turn.

Table 1 shows that minimalloc is characterized by poor
scalability as regards allocation time, while our allocator does
not have the same problem. Moreover, the two asterisks
denote that we had to manually configure minimalloc in order
for it to converge in reasonable time (when we did not do that,
allocation time for the 5K case proved more than 80 minutes
long, at which point we stopped the execution).

Arguably, given idealloc’s stochastic nature, this comparison
is unfair to minimalloc. Nevertheless, both these results and
our plan to tame randomness via Monte Carlo Tree Search as
remarked in the previous section, hint towards exciting
prospects for our implementation in the future.

Table 1: Single-iteration latencies
(ms).

of buffers minimalloc idealloc

154 6 8

296 6 9

454 6 13

1821 601* 87

5620 12949* 1703

18692 SEGFAULT 1393

Table 2: Empirical
comparison benchmark

characteristics.

Bench
mark

of
buffer

s

Load
(x4 KiB
pages)

A 154 256

B 170 256

C 203 254

D 213 241

E 215 256

F 296 256

G 308 256

H 316 256

I 374 256

J 409 242

K 454 256

13

6. Integration with the CONVOLVE Compiler
The offset assignment agent presented in this deliverable has been implemented as a
shared library in the Rust programming language. The compiler expected as the main output
of WP5 utilizes the Python MLIR framework xDSL6. In order for idealloc to be integrated
with CONVOLVE’s compiler, the following steps need to take place:

● the tensor lowering, bufferization/deallocation, and lifetime annotation operations
noted in the Introduction section must be implemented in xDSL. Particularly
regarding lifetimes, (i) a definition of logical time must be formed and (ii) it seems
more natural to do the annotations on the tensor level and propagate them
downwards from there.

● the result of the previous step must be raised up again to (or maintained all along as)
some Python collection of objects representing the derived buffers. This seems to
be the approach taken by most--if not all--compilers and frameworks listed in the
Related Work section.

● a Python ←→ Rust Foreign Function Interface (FFI) such as PyO37 must be used to
allow xDSL and idealloc to communicate.

7. Conclusion
We have reported on our recent work on memory management for ML compilers,
specifically the problem of buffer allocation. The solution presented stands very
competitive against the state-of-the-art, and exposes a very simple interface to the
CONVOLVE compiler in both the technical and the semantics sense.

8. References
[1] A. Symons, L. Mei, S. Colleman, P. Houshmand, S. Karl, and M. Verhelst, “Towards

Heterogeneous Multi-core Accelerators Exploiting Fine-grained Scheduling of Layer-
Fused Deep Neural Networks.” arXiv, Dec. 20, 2022. Accessed: Apr. 16, 2024. [Online].
Available: http://arxiv.org/abs/2212.10612

[2] N. Vasilache et al., “Composable and Modular Code Generation in MLIR: A Structured and
Retargetable Approach to Tensor Compiler Construction.” arXiv, Feb. 07, 2022.
Accessed: Apr. 16, 2024. [Online]. Available: http://arxiv.org/abs/2202.03293

[3] “Bufferization - MLIR.” Accessed: Apr. 16, 2024. [Online]. Available:

6 github.com/xdslproject/xdsl
7 github.com/PyO3/pyo3

14

https://mlir.llvm.org/docs/Bufferization/
[4] H. Shu, A. Wang, Z. Shi, H. Zhao, Y. Li, and L. Lu, “ROAM: memory-efficient large DNN

training via optimized operator ordering and memory layout.” arXiv, Oct. 30, 2023.
Accessed: Mar. 05, 2024. [Online]. Available: http://arxiv.org/abs/2310.19295

[5] Y. Li, A. Gupta, and S. Malik, “Combined Scheduling, Memory Allocation and Tensor
Replacement for Minimizing Off-Chip Data Accesses of DNN Accelerators.” arXiv, Nov.
29, 2023. Accessed: Mar. 05, 2024. [Online]. Available: http://arxiv.org/abs/2311.18246

[6] M. Maas, U. Beaugnon, A. Chauhan, and B. Ilbeyi, “TelaMalloc: Efficient On-Chip Memory
Allocation for Production Machine Learning Accelerators,” in Proceedings of the 28th
ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 1, Vancouver BC Canada: ACM, Dec. 2022, pp. 123–137. doi:
10.1145/3567955.3567961.

[7] M. D. Moffitt, “MiniMalloc: A Lightweight Memory Allocator for Hardware-Accelerated
Machine Learning,” in Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 4,
Vancouver BC Canada: ACM, Mar. 2023, pp. 238–252. doi: 10.1145/3623278.3624752.

[8] M. Levental, “Memory Planning for Deep Neural Networks.” arXiv, Feb. 23, 2022.
Accessed: Mar. 07, 2024. [Online]. Available: http://arxiv.org/abs/2203.00448

[9] “[RFC] Unified Static Memory Planning - Development / pre-RFC,” Apache TVM Discuss.
Accessed: Apr. 16, 2024. [Online]. Available: https://discuss.tvm.apache.org/t/rfc-
unified-static-memory-planning/10099/3

[10] I. Lamprou and Z. Zhang, “Safe Optimized Static Memory Allocation for Parallel Deep
Learning”.

[11] “openxla/xla.” OpenXLA, Apr. 16, 2024. Accessed: Apr. 16, 2024. [Online]. Available:
https://github.com/openxla/xla

[12] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”.

[13] M. Abadi et al., “TensorFlow: A system for large-scale machine learning”.
[14] “google/jax.” Google, Apr. 16, 2024. Accessed: Apr. 16, 2024. [Online]. Available:

https://github.com/google/jax
[15] “TensorFlow Lite | ML for Mobile and Edge Devices,” TensorFlow. Accessed: Apr. 16,

2024. [Online]. Available: https://www.tensorflow.org/lite
[16] Y. Pisarchyk and J. Lee, “Efficient Memory Management for Deep Neural Net Inference.”

arXiv, Feb. 15, 2020. Accessed: Mar. 05, 2024. [Online]. Available:
http://arxiv.org/abs/2001.03288

[17] T. Chen et al., “TVM: An Automated End-to-End Optimizing Compiler for Deep Learning”.
[18] Ltd. Huawei Technologies Co., Ed., “Huawei MindSpore AI Development Framework,”

in Artificial Intelligence Technology, Singapore: Springer Nature, 2023, pp. 137–162. doi:
10.1007/978-981-19-2879-6_5.

[19] P. Tillet, H. T. Kung, and D. Cox, “Triton: an intermediate language and compiler for tiled
neural network computations,” in Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, Phoenix AZ USA: ACM,
Jun. 2019, pp. 10–19. doi: 10.1145/3315508.3329973.

[20] A. L. Buchsbaum, H. Karloff, C. Kenyon, N. Reingold, and M. Thorup, “OPT versus LOAD
in dynamic storage allocation,” in Proceedings of the thirty-fifth annual ACM symposium

15

on Theory of computing, in STOC ’03. New York, NY, USA: Association for Computing
Machinery, Jun. 2003, pp. 556–564. doi: 10.1145/780542.780624.

[21] C. P. Lamprakos, S. Xydis, F. Catthoor, and D. Soudris, “The Unexpected Efficiency of
Bin Packing Algorithms for Dynamic Storage Allocation in the Wild: An Intellectual
Abstract,” in Proceedings of the 2023 ACM SIGPLAN International Symposium on Memory
Management, Orlando FL USA: ACM, Jun. 2023, pp. 58–70. doi: 10.1145/3591195.3595279.

[22] C. B. Browne et al., “A Survey of Monte Carlo Tree Search Methods,” IEEE Trans. Comput.
Intell. AI Games, vol. 4, no. 1, pp. 1–43, Mar. 2012, doi: 10.1109/TCIAIG.2012.2186810.

