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Deliverable Summary 
Memory management is important for machine learning kernels due to the large amount of 
data transfers. Memory management in the context of machine learning accelerators is split 
in two parts: (i) planning and (ii) runtime data transfer management. The planning part is 
further divided into bufferization, i.e., assigning memory buffers to tensors, and offset 
assignment, i.e., placing each of the distinct buffers to contiguous chunks of on-chip 
memory. This document describes our work on the offset assignment front, which is 
orthogonal to both the bufferization and data transfer parts. 

To this end, we present (i) a survey of existing solutions from the state-of-the-art, (ii) a high-
level description of our offset assignment agent, (iii) an empirical comparison between our 
agent and the aforementioned related work, and (iv) a list of the tasks remaining to 
completion of the whole memory management flow. 

In its current state, our solution outperforms most of the state-of-the-art with respect to 
memory footprint. Work to also make our offset assignment agent fast is in progress, and 
opens exciting research directions. Integration with CONVOLVE’s compiler is 
straightforward, though not yet done. 
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1. Introduction 
The immense popularity of neural networks coupled to their ever increasing size deems 
optimal memory handling a vital component of any machine learning (ML) pipeline. This 
holds true regardless of where a model is deployed: memory is an equally valuable resource 
in the Cloud and in a constrained edge device. 

In the context of ML compilers, memory optimization is a two-stage process. A network 
described as a sequence of layers, each layer node operating on and emitting tensors, is 
first scheduled--that is, independent computation chunks are identified and destined for 
simultaneous execution. The CONVOLVE compiler shall utilize STREAM to analyze and guide 
decisions for that purpose [1]. 

Figure 1: A conceptual overview of CONVOLVE’s compilation process, 
and memory management’s place therein. 

The derived schedule is then lowered from tensor operations to accelerator-specific ones. 
A part of said lowering decides and keeps track of which memory buffers hold the data of 
which tensor, with the overall goal of keeping the total number of tensors to a minimum. 
This step, called bufferization, concludes the first stage of memory optimization. 
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Bufferization is usually conducted independently of the next stage [2], [3], but synergistic 
approaches do exist [4], [5]. At the time of writing this deliverable, CONVOLVE plans to keep 
bufferization and offset assignment separate, but its infrastructure is such that future 
attempts towards combined memory management remain feasible (if such attempts are 
viewed as an iterative process repeatedly invoking existing parts). 

Buffers are annotated with lifetimes, i.e., moments of logical time between which a buffer 
is considered “live”. Temporally overlapping buffers must remain spatially disjoint, while 
non-overlapping ones may share the same memory space. As long as the compiler has a 
concrete definition of logical time, this lifetime analysis is trivial; an indirect consequence 
of the scheduling and bufferization steps, given the network’s static architecture. 

The final sequence of lifetime-annotated buffers is the input of memory optimization’s last 
stage. In the literature it comes by many names: buffer allocation [6], static memory 
allocation [7], static memory planning [8], [9], memory layout optimization [4], offset 
assignment [10]. We will be using the terms “buffer allocation” and “offset assignment” 
interchangeably, though the essence remains the same: each buffer receives an address 
space offset during that analysis, its goal being to utilize as little memory as possible. 

Deliverable D5.2 presents the work conducted by ICCS in the context of offset assignment. 
Integration with the rest of CONVOLVE’s compiler is left as a task for the final memory 
management deliverable. Scheduling is already handled by STREAM, while bufferization is 
merely an off-the-shelf MLIR transformation. As will be shown later, even in its current 
state, our buffer allocator outperforms the vast majority of the state-of-the-art with 
respect to memory footprint. 

 

Figure 2: A more detailed map of work done in WP5. The scope of deliverable D5.2 is marked in red. 
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2. Related Work 
To emphasize offset assignment’s relevance to real-world ML deployments, we structure 
this section according to the various frameworks and compilers used in production. We 
shall conclude with academic works that are not yet in production but bear strong 
resemblance to our topic. 

XLA [11]: an open-source compiler developed by Google, used by popular frameworks such 
as PyTorch [12], TensorFlow [13] and JAX [14]. The offset assignment algorithm followed by 
XLA focuses on speed rather than memory efficiency, since it relies on simple best-fit 
placement of the buffers after it has sorted them by lifetime1. 

TFLite [15]: a specialized version of TensorFlow tailored to embedded devices and 
microcontrollers. There are five different memory allocation algorithms available in TFLite: 
greedy-by-size, greedy-by-breadth, greedy-in-order, strip packing, and minimum-cost flow  
[16]. This variety is reflected on different footprint/latency trade-offs2. 

TVM [17]: open-source compiler maintained by the Apache Foundation and targeting a wide 
array of accelerator backends such as CPUs, GPUs, even FPGAs. TVM also employs more 
than one buffer allocator: greedy-by-size, greedy-by-conflict, and a hillclimb version 
alternating between the former two3.  

MindSpore [18]: an open-source framework developed by Huawei Technologies, targeting 
CPUs, GPUs and the Ascend NPU. MindSpore addresses an extended version of offset 
assignment for training networks in parallel on the same accelerator. The core logic remains 
identical to most other works: apply some sorting to the buffer sequence, and then place 
them with an either first- or best-fit heuristic. Due to the requirement for parallel training, 
these algorithms are enriched by the notion of safety [10]4. 

Triton [19]: a GPU focusing compiler and IR adopted by OpenAI. Triton uses a linear-time 
storage allocation algorithm formulating the problem as interval graph coloring5. 

Two more works that have ended up being integrated in XLA are TelaMalloc [6] and 
minimalloc [7]. Both of them use rectangle packing as their problem formulation--in line 
with our own allocator. Rectangle packing for memory allocation is known to be NP-hard, so 

 
1 github.com/openxla/xla/blob/main/xla/service/memory_space_assignment/best_fit_repacker.cc 
2 github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/delegates/gpu/common/memory_management 
3 github.com/apache/tvm/tree/main/src/tir/usmp/algo 
4github.com/mindspore-
ai/mindspore/tree/5f329d13e3154083d7ee03afd544be64d5d4b765/mindspore/ccsrc/backend/common/somas 
5 github.com/openai/triton/blob/a791746de8f49c99c9e4cc2bf21f6eb639dbf07d/lib/Analysis/Allocation.cpp 
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both algorithms devise their own heuristics: TelaMalloc an ML-assisted ILP program, and 
minimalloc a lattice theory isomorphism. 

3. Background 
The research described in this document utilizes the formulation of static memory 
allocation as an instance of two-dimensional rectangle (or bin) packing. Let us now 
elaborate on this abstraction. 

As stated earlier, the memory requirements of a neural 
network’s inference stage are viewed as a set of 
lifetime-annotated buffers. Each buffer is a rectangle in 
a 2D space where the vertical axis represents the 
accelerator’s address space and the horizontal axis 
denotes logical time. The allocator may slide rectangles 
up and down, the operation standing for different offset 
assignments; it cannot, however, slide them sideways. 
Buffers are also restricted from overlapping vertically. 

Figure 3: A rectangle packing example. 

Rectangle packing algorithms place buffers in such a way in order to minimize the resulting 
placement’s makespan, i.e., the largest offset occupied by any buffer. The problem is NP-
hard and although it has been extensively studied in the theoretical computer science 
literature, solution optimality is still at quest. If we define a placement’s load as the 
maximum sum of simultaneously live buffers--in other words a lower bound for the ideal 
placement, the state-of-the-art algorithm, guarantees solutions at most (2 + 𝜖) times 
bigger than the load [20]. 

4. idealloc 
We have created idealloc, an implementation of the state-of-the-art rectangle packing 
algorithm originally described in [20]. Its design has been published in extensive detail as 
an open-access research paper [21]. This section presents the main key points; we more 
than encourage curious readers to consult our paper. 

4.1 Intuition 

In its original paper, the algorithm is demonstrated as a series of theorems and corollaries, 
each proved by construction. Each next theorem builds on top of the previous ones, starting 
from elementary cases with, e.g., restrictions on the possible sizes of treated buffers, and 



9 
 

culminating to a general solution. Our implementation is nothing more than a translation of 
each proof into source code. 

Figure 4: A placement derived by idealloc for one of minimalloc’s production-grade TPU benchmarks. 

 

The cornerstone operation introduced in the very first lemma of [20] is boxing: groups of 
buffers are boxed together into larger rectangles that are themselves viewed as buffers by 
the algorithm. For instance, a boxing of buffers A and C in Figure 3 is a rectangle of height 3 
and lifetime spanning from 0 to 6. Most of the algorithm can be seen as an iterative boxing 
process with nested recursions--on a high level. 

When a specific criterion regarding the ratio of the formed boxes’ minimum and maximum 
heights is met, the algorithm has converged. 

4.2 Final Placement Derivation 

Boxing is only the first part of our implementation. It yields a set of boxes which therefore 
contain boxes and so on until some level where only original buffers reside. In the second 
part, we iteratively unbox and place until we reach that base level. 
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One final part deals with the fact that after all the unboxing is done, the initially derived 
placement is pretty sparse--this is probably owed to the algorithm’s theoretical needs 
toward formal guarantees. We compensate for this sparsity with a “tightening” pass. 

4.3 Performance and Scalability 
Contrary to our original publication, 
idealloc does not suffer neither from high 
latency nor from Out-Of-Memory (OOM) 
killers. We have made several 
enhancements in order to be able to deal 
with arbitrarily large buffer sets (in the order 
of millions).  

A simple example is that the original version 
was making new objects in memory to 
represent the contents of each new box: 
thus one buffer had as many clones on the 
heap as boxes it belonged to, which, due to 
the recursive nature of the boxing 
procedure, was consuming exponential 
DRAM amounts. We are currently storing 
pointer vectors instead, thus keeping 
memory consumption linear to the number 
of boxes. 

Figure 5: High-level boxing schematic. Recursion marked  
in purple, and random point selection in blue. 

4.4 Quality Stochasticity 

In the deliverable summary we mention that we are still trying to make idealloc faster; yet 
the last subsection boasts that it’s behaving fine latency-wise. This contradiction is owed 
to the--as of yet undisclosed--stochastic nature of the boxing algorithm. We try to illustrate 
what we mean in Figure 5. 

Recall that the whole process may be viewed as iterative nested recursions. In the figure we 
have marked recursion nodes (Theorems 2 and 16) in purple. Theorem 2 also exhibits a 
randomness component: more precisely, given a subset of boxes and a time horizon, the 
algorithm must select a random point in that interval under the constraint that at least one 
buffer is live at that moment. This detail makes idealloc inherently stochastic, since we 
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have observed that different point selections yield different placement makespans. 
Moreover, each “move” made  affects the moves available in the next stage. 

Thus, idealloc doesn’t suffer from high latency as long as we run the algorithm only once, 
i.e., as long as a single sequence of random moves is made. But our early experiments 
showed that yielding the best possible placements in a single iteration is unlikely (see next 
section). Our current remedy is thus to run idealloc a high enough number of times in order 
to be certain that a broad area of the search space has been covered. We recently realized 
that our case is a single-player game: each random moment selection instance may be 
viewed as a node in a search tree. To this end, we are in the process of implementing Monte 
Carlo Tree Search [22] towards reducing total iterations. 

5. Evaluation 
To test our allocator’s performance, we performed an offline, i.e., not integrated to some 
ML framework, comparison of idealloc’s performance against the state-of-the-art 
solutions presented in the Related Work section. 

More specifically, we isolated the allocator source code of each compiler and fed it with the 
open-source TPU benchmarks of the minimalloc repo.  

Figure 6: A subset of our memory footprint measurements normalized to each benchmark’s load. 
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Then we gave the same benchmarks as inputs to our 
implementation, which we executed repeatedly 1 
million times. We were interested in answering the 
following research questions: 

● how do we perform against the state-of-the-art 
with respect to memory footprint? 
● how do we perform against the best allocator 
memory-wise with respect to single-iteration 
execution time? 

Figure 6 answers the first question. We have kept only 
the two hardest benchmarks (J, K) in order for it to 
remain as informative and easy-to-read as possible. 

The numbers are normalized to the benchmarks’ lower bound, 
i.e., their load. We observe that idealloc stays within a 20-
40% range from the theoretical optimum (while, quite 
impressively, minimalloc consistently achieves it). The two 
next-best allocators, MindSpore and TVM hillclimb, perform 
very close to our implementation. This pattern was consistent 
across all 11 benchmarks. In 7 out of the total 11 cases, only 
minimalloc beat our implementation. This sparked our 
second research question, to which we now turn. 

Table 1 shows that minimalloc is characterized by poor 
scalability as regards allocation time, while our allocator does 
not have the same problem. Moreover, the two asterisks 
denote that we had to manually configure minimalloc in order 
for it to converge in reasonable time (when we did not do that, 
allocation time for the 5K case proved more than 80 minutes 
long, at which point we stopped the execution). 

Arguably, given idealloc’s stochastic nature, this comparison 
is unfair to minimalloc. Nevertheless, both these results and 
our plan to tame randomness via Monte Carlo Tree Search as 
remarked in the previous section, hint towards exciting 
prospects for our implementation in the future. 

 

Table 1: Single-iteration latencies 
(ms). 

# of buffers minimalloc idealloc 

154 6 8 

296 6 9 

454 6 13 

1821 601* 87 

5620 12949* 1703 

18692 SEGFAULT 1393 

Table 2: Empirical 
comparison benchmark 

characteristics. 

Bench
mark 

# of 
buffer

s 

Load  
(x4 KiB 
pages) 

A 154 256 

B 170 256 

C 203 254 

D 213 241 

E 215 256 

F 296 256 

G 308 256 

H 316 256 

I 374 256 

J 409 242 

K 454 256 
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6. Integration with the CONVOLVE Compiler 
The offset assignment agent presented in this deliverable has been implemented as a 
shared library in the Rust programming language. The compiler expected as the main output 
of WP5 utilizes the Python MLIR framework xDSL6. In order for idealloc to be integrated 
with CONVOLVE’s compiler, the following steps need to take place: 

● the tensor lowering, bufferization/deallocation, and lifetime annotation operations 
noted in the Introduction section must be implemented in xDSL. Particularly 
regarding lifetimes, (i) a definition of logical time must be formed and (ii) it seems 
more natural to do the annotations on the tensor level and propagate them 
downwards from there. 

● the result of the previous step must be raised up again to (or maintained all along as) 
some Python collection of objects representing the derived buffers. This seems to 
be the approach taken by most--if not all--compilers and frameworks listed in the 
Related Work section. 

● a Python ←→ Rust Foreign Function Interface (FFI) such as PyO37 must be used to 
allow xDSL and idealloc to communicate. 

 

7. Conclusion 
We have reported on our recent work on memory management for ML compilers, 
specifically the problem of buffer allocation. The solution presented stands very 
competitive against the state-of-the-art, and exposes a very simple interface to the 
CONVOLVE compiler in both the technical and the semantics sense. 
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