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Deliverable Summary 

In this deliverable, we present the current (intermediate) status of the CONVOLVE methodologies and 
early assessment, exploration and optimization tools for the analysis of the error resiliency vs. energy 
gain trade-offs of the Neural Networks (NNs) with respect to the arithmetic approximation to be 
employed in an approximate Coarse Grained Reconfigurable Array (CGRA) accelerator and the timing 
sensitivities of near-threshold voltage operation. An early assessment design framework is 
presented to enable analysis of accuracy vs. energy trade-offs for characterizing the NN resiliency 
with respect to timing induced errors due to near-threshold voltage operation. Regarding to 
arithmetic approximation, we provide a systematic methodology and the corresponding automation 
tool-flow to explore HW-aware fine-grained arithmetic error distributions across the NN in a layer-
wise and end-to-end approach, thus examining their impact on accuracy and energy. The outcome 
of this activity will be a map for which NN operation its error resiliency and how this resiliency could 
be achieved optimizing the approximate and/or near-threshold voltage computing knobs of 
CONVOLVE System-on-Chip (SoC). More specifically, in this deliverable we present the following 
contributions: 

• Near Threshold Computing (NTC) energy modeling for In-Memory-Computing (IMC) 
accelerators with NN workloads. We extend ZigZag-IMC to estimate energy consumption 
under component specific NTC configurations.  

• Fault injection of IMC accelerators that simulate NTC errors due to variability and critical path 
timing failures. 

• Accuracy based resiliency analysis of approximate multiplication components in YOLOv6 use 
case.  

• Improvements in approximate component testing framework and CGRA integration. 

 

 

 

 

 

 

 

 



   
 

   
 

1. Introduction 

In recent years Neural Network implementations tend to expand in complexity, in response 
to the growing field of demanding applications. With the growing complexity however, resource 
needs and energy consumption skyrocket as low energy techniques are becoming more and more of 
a requirement to platforms that handle these. To that extent, near-threshold computing (NTC) and 
approximate computing techniques have garnered significant attention in recent years due to their 
potential to mitigate these increasing energy demands of power-hungry neural network 
implementations. Both approaches take advantage of the inherent resiliency of neural networks to 
errors by trading accuracy for energy consumption. Errors can appear in NTC through bit flips and 
timing faults and in approximate computing through reduction of precision of operations. This 
warrants the possibility for exploration of tradeoffs between errors caused by the techniques and 
energy consumption. 
 

NTC entails lowering of the supply voltage of the circuit at close to the threshold voltage of 
transistors, where they exhibit significantly lower energy consumption compared to standard 
operation. When considering In-Memory-Compute (IMC) accelerators, we can profile and locate the 
components that cause the largest percentage of energy consumption or errors, taking into account 
their effects in our analysis. To address these considerations, we extend  ZigZag-IMC, a framework 
for mapping Deep Neural Networks (DNN) to IMC accelerators, so that it models accelerators in NTC 
regime and produces information about optimal mapping and energy consumption specifically for 
these. Additionally, we include leakage energy in the NTC model and tweak the cost model to 
effectively calculate the dynamic and leakage energy consumption separately for the multiplier array 
in the Digital IMC accelerators. Finally, we utilize PyTorchFI, a real-time DNN perturbation tool, in 
order to model errors in IMCs, taking into account cell array variability and adder tree timing errors 
introduced from supply voltage scaling.  
 

In Section 3, we show Approximate Computing (AxC) and the impact of those types of 
operations in achieving great Power and Area gains by using hardware pruning techniques, having a 
certain accuracy drop. For this reason we continue our approximate arithmetic components 
research by evaluating two state-of-the-art [12][13] approximate multipliers in the detection stage 
of the YOLOv6 NN. Yolov6 model includes image processing and convolutional layers which are 
common fields that hardware approximation can adapt [15]. The techniques we are utilizing to make 
this evaluation include a high level PyTorch implementation of a behavioral simulation of those 
components managing to achieve a benchmarking environment that performs the same inference 
stage as the software implemented one, providing the outputs that analyze the accuracy-based 
resiliency of the chosen components. Finally, we are also providing an integration scheme of those 
components to the Blocks [14] CGRA environment. 

 For the DNN resiliency analysis, we work on integrating fault injection and extending ZigZag-
IMC, a tool created in WP6 that targets IMC architectures of WP2, for modeling NTC. In terms of the 
approximate arithmetic CGRA components, this deliverable integrates implementations mentioned 



   
 

   
 

in WP1 for testing and evaluation as outputs of previous research tracks mentioned in deliverables of 
the analysis handled in Task 2.2 of WP2 and after our evaluation, the integration will continue with 
ZigZag experimentation and CGRA communication with the SNAX core, with outputs and methods 
produced in WP6. 

 

2.Neural Network Resiliency analysis for NTC 

2.1 Overview 

Since DNNs can tailor gradual decreases in accuracy with exposure to error instead of 
catastrophic failure of results, approaches that exchange error for benefits in performance or energy 
are worth looking into. NTC is one that exploits circuit components operating close to the threshold 
voltage and thus achieving significant energy savings while introducing possible error through timing 
faults and variability.   

In addition to improving DNN execution, utilizing IMC architectures for DNN acceleration 
helps minimize data movement operations and latency from them. With these in mind, we are 
developing an energy-performance model for IMC accelerators operating in NTC on top of the 
ZigZag-IMC framework. The complete framework calculates the consumption and performance of 
the best mapping for a DNN taking into consideration NTC parameters. Finally, we model variability 
errors in the cell array and timing faults in the adder tree using the  PyTorchFI framework and extract 
the error resiliency of the network.  
 

2.2 Related Work 

In the work GreenTPU [3], the focus is on fault prevention for Tensor Processing Units (TPUs) 
operating at NTC. However, they develop a monitor/predictor that reads the inputs of an NTC TPU 
looking for error causing sequences, at which point the TPU is set to Super Threshold Computing 
(STC) to prevent errors. They provide an analysis of vulnerable paths and probability of error/fault 
depending on the delay. Other works focus specifically on DNNs [5] and evaluate resiliency of 
networks for errors/faults caused in voltage underscaling. They explore possibilities of increasing 
tolerance to voltage underscaling errors within the training phase of a DNN for FPGA platforms. This 
work is specific for DNN acceleration on IMC [6]; it develops a framework for locating worst case 
performance of DNNs taking into account non-volatile memory variability errors while focusing on 
safety critical application. It is shown that even small amounts of variation can prove detrimental for 
applications with very low error tolerance, while existing methods are proven ineffective or too costly.    

In contrast, we provide a framework for analyzing the effects of implementing NTC 
techniques on IMC accelerators for DNNs, modeling performance and energy while measuring the 
error resiliency of the network on these techniques.  
 



   
 

   
 

2.3 NTC for IMC assessment framework model   
For the assessment of the NTC for IMC we present our methodology, which includes 

Performance, Energy and Resiliency Analysis. Figure 1 displays the complete methodology for the 
entire framework. We firstly incorporate our in-house energy-performance model with the use of 
NTC scaling factors, into the ZigZag-IMC framework. We also add capabilities for leakage energy 
estimation using characterization tools to extract the values. Once we have the model with our 
extensions, we are able to produce the optimal energy consumption and scheduling information for 
DNNs mapped on NTC IMC hardware. By taking into account variability of the IMCs cell array along 
with the timing analysis of the IMCs adder tree and mapping from the model, we produce NTC 
operation faults by injecting them into the DNN using the PyTorchFI tool. Depending on the results 
of the network, we can estimate its resiliency for NTC Errors.  
 

 
Figure 1. NTC in IMC model general methodology.  

 

 

 

 

2.3.1 IMC architecture template and Analytical Performance Model 

IMC Architecture and Components 

The IMC NTC Framework is built on top of ZigZag-IMC and inherits the architecture for Analog 
and Digital IMC accelerators as shown in [1]. More specifically for each implementation: 

• For Analog IMC (AIMC) accelerators, the weights are stored in the cell array with binary values 
while the inputs are fed into the cell array after passing through a Digital-Analog converter, 



   
 

   
 

in analog format. This method of computation alleviates the need for accumulation and thus 
the components of the AIMC accelerator are the I/O registers, DACs and ADCs, the cell array, 
and the digital adder tree that is right after the Analog-Digital converter at the output.  

• For Digital IMC (DIMC) accelerators, the inputs and the weights stored in the cell array are in 
binary format and so the main components are the I/O Registers, the cell array, the multipliers 
and the adder tree/accumulator components. In the analytical cost model of ZigZag, all 
hardware components are described based on their 1-bit design implementations, e.g. 1-bit 
memory cell, 1-bit adder etc., which are then used to estimate their total energy consumption 
w.r.t. their actual sizing. 

 

Figure 2. Architecture of IMCs as modeled in ZigZag-IMC[1]. 

To increase the versatility of the model, we extend it so that each component is considered 
as a separate voltage island and can be fed with different supply voltages.  The user includes in the 
input hardware files a set of supply voltages for each component along with the standard hardware 
description. The voltages are passed in the cost model of the tool and are used to calculate the new 
consumptions of each 1-bit component.  After the framework considers a possible mapping, it 
produces the total number of activations for each computing and memory component, and using the 
1-bit consumptions we provide, generates the energy while taking the voltage islands into account.  

Inputs/Parameters Description 

Workload Onnx model of DNN 

Mapping File Description of the mapping of operations on 
the specific hardware 



   
 

   
 

Hardware File 
• Memory Hierarchy:  

Memory sizes, attributes and 
consumption (can use  cacti) 

• Technology Parameters: 
Supply voltage and basic logic gates 
attributes (area, capacity, delay) 

• Processing element parameters:  
Input / Weight precisions and Cell 
Array dimensions, operation details 
and operation costs (can use cacti) 
 
 

Evaluation Metric Return Minimal Energy, Minimal Latency or 
Minimal Delay-Product 

Table 1. Standard ZigZag Inputs/Parameters 

With this extension we are allowed to explore which components can benefit more from NTC 
regimes and how each one impacts performance and consumption. In Section 2.3.2 we present 
results from this analysis for the complete energy-performance model, where we evaluate with the 
models from the ml_perf_tiny suite. 

Frequency Scaling 

Frequency scaling in near-threshold computing is of great importance, as it can have a 
significant impact on performance, energy efficiency and reliability of results. While significant 
energy savings are enabled from voltage reduction compared to conventional approaches, 
components of the circuit can start to fail due to timing and variability concerns, which end up 
reducing the accuracy of the result. At higher frequencies, these timing faults are even more 
exaggerated. By adjusting the frequency while having the supply voltage in mind, we can manage to 
meet timing margins and improve the reliability of the HW. 

We introduce the frequency scaling factors used in our framework, that we apply per 
component, for each of our voltage islands. The new frequency at NTC is calculated as follows, where 
Vdd,STC and Vdd,NTC  are the operating voltages of the component in STC regime and NTC regime, 
Vth is the threshold voltage, fSTC is the frequency of the component in STC regime and b is a 
technology-dependent constant (≈ 1.5): 

 



   
 

   
 

ZigZag produces a maximum clock in ns that comes from the nominal delay of each 
computing component in the multiplication-addition-accumulation chain. We apply our frequency 
scaling factors, depending on the component’s NTC voltage supply characteristics specified in the 
HW file, separately, to differentiate each island. 

 

Hardware Characterization of Adder Trees 
To model adder trees and the errors from the adder trees in the IMC we need information 

about the critical paths and the longest paths in general, as those are the ones that cause errors 
when switching to the NTC regime.  

We get these paths by synthesizing the adder trees with the Synopsys Design compiler along 
with the gcslib45nm library and gathering timing information. This process extracts the exact delay 
of the longest paths, from input bit to output bit of each adder that can cause errors in the NTC 
regime.  Knowing the delays of the paths for each input bit, we determine error probability by using 
the error distribution given in [3]. Paths with delays close to the clock period are more susceptible to 
faults compared to shorter paths. 

 

 
Figure 3. Locating critical paths from all output bits and measuring delays. 

 



   
 

   
 

In order to implement such errors into PyTorchFI, we utilize its ability to model neuron errors 
in a network with bit precision. In this way, adder tree errors are modeled as neuron/activation map 
errors that are added specifically for each tested layer, causing error to the precise bits that belong 
to the faulty path. 

Table 2 displays the critical paths for each output bit along with the delay, for adder trees with 
32 inputs and 32-bit precision. Table entries in this format: Input[A][B] -> sum[C] specify that the 
critical path begins from input A and bit B and finishes at the C-th bit of the output. We observe that 
most inputs that appear on the table belong in several of the critical paths. The clock used to 
synthesize the adder trees is 700MHz or 1.42ns period. 
 

Path  Delay(ns) 

Input[3][4] -> sum[12-31] 1.04-1.42 

Input[3][5] -> sum[8-11] 0.95-1.06 

Input[2][0] -> sum[1-3, 6-7]  0.54-0.94 

Input[3][2] -> sum[4-5] 0.78-0.81 

Input[20][0] -> sum[0] 0.37 

Table 2. Critical paths from all output bits with respective delays. 

 
For Standard Vdd = 0.9V we achieve 700MHz or 1.42ns period which is met by the bit with the 

worst delay. Using the performance model we described, we can find the new delay paths for our new 
delays for the critical paths of the adder, after we scale the supply voltage down to Vdd=0.55V.  The 
new frequency for NTC goes down to 50.6MHz and a period of 19.75ns, meaning that by scaling the 
frequency down to 50.6MHz, we introduce no error from the adder tree.  By applying the same model 
for bit 12 of the sum, we find that the new delay for it is 14.38ns and thus can operate with a maximum 
frequency of 69.5MHz. 
 

2.3.2 Assessing Near Threshold Voltage for IMC 

For Energy modeling of IMC accelerators, we work with ZigZag-IMC, a DSE tool for mapping 
NN workloads on IMC hardware. A HW description along with a NN workload and a spatial mapping 
file (or mapping hints) that describes how the workload should be mapped to the IMC are given as 
input to the ZigZag Framework. ZigZag generates possible mappings for the HW accelerator and 
calculates the number of activations for each memory and computing component. The cost model 
uses the user-defined capacitances for simple logic components, supply voltage and activations 
from the mapping to calculate the total energy consumption.  



   
 

   
 

We extend the energy model to include contribution from Leakage Energy alongside Dynamic 
consumption, since NTC circuits are mostly Leakage dominated. Leakage energy consumption for 
the computing components and registers of the cell array are extracted through Synopsys Power 
Compiler characterization. These include the Multipliers, Half Adders, Full Adders, and I/O Registers. 

For all computing components we create scaling factors for Dynamic and Leakage Energy 
that allow for scaling to NTC [2]. The equations for the Scaling Factors and the calculation of the 
Power consumption are shown in Figure 4.  The scaling factors consider the Drain-Induced Barrier 
Lowering effect which is related to the reduction of the threshold voltage as a function of the drain 
voltage. Lowering of the supply voltage causes exponential reduction in sub-threshold current. In the 
equations, Vdd=0.55V for the error free NTC voltage and Vth_stc = 0.5V as in [3]. 
 

 
 
 
 

 

 
Figure 4. Scaling Factors and calculation of Power consumption [2]  

 

We continue by decoupling the multiplier’s Dynamic and Leakage Energy for Digital IMC, so 
that the multiplier energy is calculated as shown below, where Tot refers to Total, Dyn refers to 
Dynamic, Leak refers to Leakage and SF refers to Scaling Factor. 

 

 
For the rest of the computing components, Total energy is calculated at every activation of a 

component and is equal to: 
 

 

For the Memory components of the IMC, including the cell array, the dynamic write costs are 
gathered using cacti, an analytical tool that takes memory parameters as input and returns the 
memory’s performance and energy specifications. Then, the dynamic scaling factor, calculated as 



   
 

   
 

explained earlier, is applied on top. We consider leakage Energy of the memories to be approximately 
¼ the dynamic energy of cacti and apply our leakage scaling factor on top. Energy calculation for the 
memories is shown below, where ActivMemCells is the total amount of memory cells activated in a 
layer, calculated by ZigZag-IMC: 
 

 

Figure 5 shows exactly where our implementation changes the base ZigZag-IMC Model.  More 
specifically, in the base HW files we include the specific Vdds for each of the components, allowing 
configurations where separate components are considered as different voltage islands. This is also 
where the scaling factors for the cell array and the memories are calculated and the write-cost to 
each memory is assigned. In the cost model and base architecture hardware files we change the 
standard calculation of energy per component and instead we use our energy values gathered from 
synopsys characterization for leakage, along with the standard dynamic values. For each 1-bit 
component, the energy is calculated using the characterization value as mentioned and the scaling 
factors for the energies.  We modify the cost model to keep track of the not activated multipliers in 
each layer and assign them the leakage contribution, scaled appropriately, while the activations are 
multiplied with the dynamic energy per multiplier, also scaled appropriately. Finally, the extended 
ZigZag-IMC-NTC is able to produce optimal scheduling and energy consumption of a DNN mapped 
on the HW, taking into account the updated characteristics of our IMC imposed by NTC operation. 
 

 

 
Figure 5. NTC Model modifications to the base ZigZag-IMC Flow 

 

 

Demonstration of ZigZag-IMC-NTC with DIMC and AIMC Accelerators 

  We present Energy results when exploring several STC-NTC configurations on each available 
component of the IMC. We also test for several Cell-Array sizes and measure how these affect the 



   
 

   
 

energy results. We evaluate these configurations on the 4 ml_perf_tiny workloads provided in ZigZag 
including DS_CNN, Mobilenet_v1, Resnet8, DeepAutoencoder and compare. Figure 6 displays the 
total flow for the experimental part of ZigZag-IMC-NTC. 
 

 
Figure 6. ZigZag-IMC-NTC Experiments Flow. 

 
 

 
The following test cases firstly cover the cell arrays and workloads at STC, then introduce 

NTC operation for each workload and finally compare all 3 variables. 
 

Test Case 1: Cell Array and Workload Comparison at STC 

 



   
 

   
 

 
Figure 7. Test Case 1: Energy comparison of Digital (blue) and Analog (orange) IMC Architectures for varying cell array sizes and workloads 

DS_CNN, MOBILENET_V1, RESNET8 and DEEPAUTOENCODER 

From the experiments presented in Figure 7 we observe that all models with the exception of 
the Deep Autoencoder seem to benefit from larger cell arrays up until 64x64, with energy dropping 
as the array size increases.   We continue with the comparison of STC and NTC implementations for 
different components, for each workload. 

 

Test Case 2: Comparison of STC and NTC 

DS_CNN: 

 

 

 

 

 



   
 

   
 

RESNET8: 

MOBILENETV1: 

DEEPAUTOENCODER: 

 
Figure 8. Test Case 2: Energy comparison of Analog Digital (left) and Analog (right) IMC Architectures for varying voltage supply 

configurations on the 4 workloads. The configurations are all components on STC (blue), all components on NTC (orange) and partial NTC of 
a single component (green) 



   
 

   
 

Through the first comparisons we find whether larger cell arrays end up benefiting the 
chosen workloads. 

In Figure 8, for the first 3 models we see large benefits from NTC operation and from the per 
component analysis we locate the more demanding parts. For both IMC architectures the SRAM 
memory always has high utilization and consumption. For the computing components, specifically, 
Digital IMCs see very large consumption from adder trees while Analog IMCs from the DAC-ADC 
converters.   

Finally for the Deep Autoencoder, we discover from the output files that more than 90% of 
the consumption in most layers comes from DRAM accesses and so other computation or SRAM 
gains from NTC are barely observable. 
 

Test Case 3: Final Workloads and Cell Array Comparisons at STC-NTC 

Workload and Cell Array Comparisons: 

Figure 9. Test Case 3: Energy comparison of Workloads (left) and IMC Architectures for varying cell array sizes (right) for DIMC and AIMC 
under full STC (blue) and full NTC (orange) regime 

In all cases presented in Figure 9 NTC designs consume less energy than their STC 
counterparts, despite any architectural or workload changes. 

 

2.3.3 Resiliency Analysis 

In order to measure network resiliency, we are required to monitor accuracy oscillations 
depending on the errors that each NTC configuration and design choice introduces. Employing 
voltage scaling of different intensities and across different components affects accuracy differently, 
inserting different types of errors. These effects can be modeled by inserting the knowledge for 
faulty paths and errors from variability distributions into a fault injection framework and comparing 
the results with the baseline. To achieve this, we use PyTorchFI,  a runtime fault injection tool for 
DNNs designed for the PyTorch framework that is able to execute a faulty DNN and produce the new 
output.  



   
 

   
 

PyTorchFI allows for perturbation on a network's weights or neurons in order to measure 
resiliency against errors. We use PyTorchFI to model errors caused while in NTC operation, due to 
the variability of the Cell array or failing path delays of the adder tree. Figure 10 shows vaguely where 
these 2 types of errors are inserted in the PyTorchFI framework. 

 
Figure 10. Perturbation types of PytorchFI and insertion points [4] 

 

Modeling NTC faults through weight perturbation 

In the previous section we explored the energy gains from scaling the cell array’s, SRAM’s and 
adder tree’s voltage, using the per-component scaling functionality from our model.  However, when 
aggressively dropping the voltage in these components of IMC accelerators, aside from energy 
consumption benefits, bit-flips and erroneous calculations can occur within certain cells of the IMC’s 
cell array. This happens due to the variability that naturally occurs from the imperfect manufacturing 
process, causing certain parts of the logic to be more susceptible to such NTC errors. The same is 
true for the SRAM memory when scaled and of course the timing failures that are introduced from 
scaling the adder tree. 

We model these errors in the PyTorchFI framework with the intent to measure the exact 
impact on the network's resiliency. These errors can be modeled with the use of perturbations in the 
network’s weights, as supported by the PyTorchFI framework. Flipping the bits in a weight of a 
convolution layer simulates a cell array failure/bit flip of the cell that stores the weight, since weights 
are loaded in the cell array where the computation takes place. Using different distributions, weight 
perturbations can simulate an adder tree path failure as well as an SRAM bit flip. With PytorchFI, we 
can run through the weights matrix and place an error in each of the weights’ position and bits 
according to the chosen distributions. After placing the errors we can run the inference, receive the 
output value, check whether the computation is faulty and gather information on resiliency.  

We can choose a variety of distributions with which we approach the injection process, thus 
modeling the variability and timing effects differently. For this analysis we test for uniform 
distributions with varying levels of intensity in order to simulate less and more aggressive voltage 
scaling. 

We evaluate resiliency on Alexnet, a CNN for image classification with 5 convolutional layers, 
in which we inject errors in the weight matrices through  PyTorchFI. In each case we evaluate with 16 
different images, each one for 5 different randomly generated noise for the distributions. Alexnet is 



   
 

   
 

a classifier with a single scalar as the output, so with this in mind, each image is chosen to showcase 
a single object or animal (car, cat, dog, fish). Also, since Alexnet takes as input 224x224x3 tensors, all 
the images were resized before being fed into the network.  

According to [3], paths with delays of 20-30% the clock period have a probability of causing 
error that is 10% or less, so maintaining a frequency of 90-100MHz means that the error rates stay at 
or under 10%. With this in mind, we test for many error rates between 0 and 0.1 in order to simulate 
more and less aggressive scaling.  

For each weight in each convolution we produce a value from our distributions and compare 
it to the selected error rate; if the error rate is bigger than the value, then the weight is perturbed. 
We explore perturbations with intensity of 5%, 10% and 30% of the weights’ value simulating 3 
different error distributions from our components; each time a weight is to be perturbed we apply a 
uniform distribution within the limits of the percentages we mentioned, we add that to the weights 
current value and after this is done for the whole network we infer all the images  and measure 
accuracy loss. 
 

 
Figure 11. Test images for alexnet weight perturbation 

 
Firstly, Tables 3 and 4 present the accuracy of Alexnet for each of the distributions of each 

component separately and combined. They display the resiliency of the network when inferring the 
chosen images with weight fault injection from the chosen distributions, error rates and weight 



   
 

   
 

percentage perturbation introduced. Error_p is the error rate with which a weight is perturbed and 
the percentage of perturbation is the amount up to which it can be changed. Different distribution 
types model different types of errors of components. Finally, Figure 12 is an accuracy vs error rate 
scatter plot containing the information of the 2 Tables. Error rate here is the probability with which 
we perturb a weight from each convolutional layer and Accuracy is compared to the base inference 
output of the model for our images. 
 

Error_p 
Accuracy of 50% 
perturbation 

Accuracy of 10% 
perturbation 

Accuracy of 5% 
perturbation 

0 1 1 1 

1.00E-05 1 1 1 

5.00E-05 0.9875 1 1 

1.00E-04 0.9875 1 1 

5.00E-04 0.975 1 1 

1.00E-03 0.95 1 1 

5.00E-03 0.875 0.9875 1 

1.00E-02 0.8 0.9875 1 

5.00E-02 0.725 0.9375 1 

0.1 0.475 0.825 0.9 

 

Table 3. Accuracy of Alexnet under weight fault injection from uniform distributions of components seapately 
 

 

Error_p Accuracy of combined distributions 

0 1 

1.00E-05 1 

5.00E-05 0.985 

1.00E-04 1 

5.00E-04 0.9375 

1.00E-03 1 

5.00E-03 0.9165 

1.00E-02 0.8585 

5.00E-02 0.5835 

0.1 0.525 
Table 4. Accuracy of Alexnet under weight fault injection from uniform distributions of components combined 



   
 

   
 

 

 
Figure 12. Accuracy vs Error Rate plot of Alexnet for error distributions of separate and combined components. Error rate is the probability 

with which we perturb a weight from each convolutional layer and Accuracy is compared to the base inference output of the model 

 

 
For the uniform distribution, lowering the perturbation percentage causes significant accuracy 

gains across all different error rate values. It is clear that the behaviors, meaning the distributions, of the 
components under NTC is crucial for controlling/retaining accuracy. We see here how dropping the 
voltage as we explored in Section 2.3.2 introduces error in the DNN and how, depending on the 
distribution, it scales with intensity. 
 

 

 

 

 

 

 

 



   
 

   
 

3. AxC Optimizations 
3.1 Overview 

The low-level operations executed in a system can vary but in the use cases that are the most 
interesting and adaptable in this project’s RoadMap are increasing. This increase has a huge impact 
on the system’s power as well as the area [7], meaning the cells that need to be utilized to make this 
complex and efficient system possible.  Along with this burst of those applications and the embedded 
systems that evaluates them, the hardware optimizations that can prune cells of a hardware 
operation and/or produce more energy efficient solutions are facing a huge bottleneck (there cannot 
be more state-of-the-art solutions in that field).  

 
Figure 13: Power-Operations Scheme in different device families. 

 

Figure 13 presents a survey-based analysis [7] of different device families in terms of the 
πεακ power and the performance during inference and training stages, along with the different 
datatypes which are used during those processes. 

A partial solution to the huge power and area utilization in modern NN applications is 
introduced by approximate computing [8] providing energy efficiency and decreased in area 
operational units (adders, multipliers, etc.) but with a tradeoff in the accuracy of the output. There 
are some use cases where those approximations cannot be integrated due to the hard QoS 
constraints (medical related scenarios) but there are also cases where the accuracy-efficiency 
trade-off can give very positive results.  

The cases where those techniques have great use are the image processing operations 
(filtering, edge detections, blurring) [10] and the extensions of them, which are the CNN based AI 
models that are commercially available in the community [11]. 



   
 

   
 

The target of this section is to take advantage of the approximate multiplication units tested 
by our research output during the Deliverable 2.2 of this project and propose a methodology that can 

• Integrate state-of-the-art approximate multipliers[12][13] in the Blocks[14] CGRA 
environment 

• Test the multipliers logic using high level inference (PyTorch) 
• Test the resiliency of the output accuracy during YOLOv6 [15] prediction stage inference 

 

 

3.2 Related Work 

The related work will mostly present the use cases of the approximate modules and not the 
actual circuit structure, because the target of this report is the use case evaluation of those 
components.  

Work presented from Semeen Rehman et. Al. [10] Presents a DFS based application of error 
scalable multipliers and the definition of 19 different approximation and accurate configurations, 
which then were tested in the JPEG compression application. Those techniques are then compared 
through the PSNR , Power and Area metrics. The Power and Area were measured with the Synopsis 
Design Compiler and the actual test were performed via a behavioral model which tested those 
approximation techniques in C code execution environment. 

Another research output presented from H. Jiang et.al. [16] measured state of the art 
techniques with accurate multipliers of Wallace tree and ArrayM in Image sharpening algorithm using 
VHDL for the behavioral component and Synopsys Design Compiler and 28nm technology library to 
fetch Power and Area estimations. 

S. Venkatachalam presented in [17] tested also state-of-the-art multiplication techniques 
based on compressor trees, partial product pruning, ACM and UDM in Gaussian Noise Filtering 
Algorithms based on Matlab generated behavioral simulation and Synopsys Design Compiler with the 
TSMC 65nm library for Power Delay product generation. 

Finally, in a more recent research approaches [11], Ying Wu et.al. presented an extended 
evaluation of approximate techniques, implementing the behavioral environment in Verilator and 
gathering Power and Area data from Synopsys Design Compiler using UMC40 library. The 
significance of this survey is that the testing of those components was performed on modern Neural 
Network models inference stage (such as AlexNet, SqueezeNet and MNIST). 

3.3 Use Cases 

3.3.1 Introduction 

In this chapter will be presented the use cases of the AxC analysis improvements. The use cases 
include the base of the ViNotion NN use case, which includes the YOLOv6 [15] model with the yolov6s6 



   
 

   
 

implementation weights and the results of the Approximate Multiplication design space exploration that 
has been delivered to the project (D2.2). This section aims to describe those technologies that will be 
used for our setup. 

 

3.3.2 YOLOv6 

YOLOv6 [15] is an advanced object detection NN based algorithm. It builds on the strengths 
of its predecessors by offering enhanced accuracy and faster processing speeds, making it highly 
suitable for real-time applications. YOLOv6 incorporates improvements in its architecture, such as 
more efficient backbone networks and optimized anchor box predictions, which contribute to its 
increased robustness and precision across a diverse range of object classes. Additionally, it is 
designed to be more scalable and easier to deploy on various platforms, from high-end servers to 
edge devices, ensuring wide applicability in fields like autonomous driving, surveillance, and 
interactive media. 

In the CONVOLVE project the YOLOv6 is a part of models being built in the ViNotion use cases. 
Unfortunately, due to technical difficulties in accessing the exact models of the WP1 use cases, we 
tried to achieve a close-as-possible approach by utilizing this model.   

Another reason than makes this model suitable for our research output is the many and 
different convolutional layers that are included in the model structure, which gives to our 
approximate components a lot of space to be run with different input and kernel sizes. 

 
Figure 14: Overvew of YOLOv6. 

 

In Figure 14 an overview of YOLOv6 is presented, as implemented by the developers. (a) The 
neck of YOLOv6 (N and S are shown). Note for M/L, RepBlocks is replaced with CSPStackRep. (b) The 
structure of a BiC module. (c) A SimCSPSPPF block. 

 



   
 

   
 

3.3.3 Approximate Multipliers 

For this project we used two state-of-the-art implementations of approximate multipliers, 
the DRUM [12] and the ROUP [13] (which in the bibliography is mentioned as APR). 

Multiplier Parameters Description 

ROUP [13] 
(In the test data is 
mentioned as APR) 

p,r 

Rounding [18] and Perforation [19] combination only. The 
ROUP_p_r multiplier cuts the p last significant partial 
products and uses routing to the ri-bit of the I non-
perforated partial product. 

DRUM [12] k,n 

A DRUM_k_n multiplier introduces the idea that some bits 
inside the two multiplication factors are not important to be 
calculated with accuracy. The parameter k defines the 
number of core-accurate bits to be calculated and the n is 
the bit width of the input numbers. 

Table 5: Approximate Components 

In the Table 5 are presented with the approximate components we chose to include. Those 
multipliers came from our research output in Deliverable 2.2, as the best-behaving multipliers in 
Error, Power and Area utilization. In the best solution there also were multipliers from the 
EvoApprox8b project [20], but due to the very hard reconfigurability they provided we chose to 
exclude them from further analysis. 

3.4 Experimental Setup 

3.4.1 Introduction 

This chapter will analyze the methodologies and tooling used in this exploration. The setup 
includes the integration of the approximate multipliers as an Blocks-CGRA compatible tile, with the 
proper ISA, IO and peripheral communication described, and the inference setup from which we can 
calculate the accuracy resiliency of each tile, utilizing behavioral simulation components with a 
higher level of PyTorch compatibility. 

3.4.2 CGRA Integration 

The approximate multipliers are integrated as an approximate tile into the CGRA, with the 
same form-factor and ISA implementation as the “vanilla” multiplication tile the Blocks CGRA 
implemented. The choice of the similar integration came as a conclusion of better compatibility with 
the implemented infrastructures as well as the adaptation of those tiles from the compilation 
firmware TUe provides for the CGRA. 



   
 

   
 

    
Figure 15: Approximate Multiplication Tile (left) 

Figure 15 presents the implementation of an approximate multiplier tile, which came from 
the same template utilization like the prebuilt one with the change of the core multiplication system 
(mentioned as APPROX_MUL in Fig. 13). Due to this similarity the ISA was the same between those 
components.  

Our research is aiming also for bigger and more runtime configurable tiles (presented in 
Deliverable 2.3) but are in the early modeling stages so they cannot be yet used for this type of 
evaluation. 

 

3.4.3 High Level Integration 

The goal of our first research output (D2.2) was mainly to pick the best approximate 
techniques among three state-of-the-art projects [12][13][20] and evaluate them having three key 
criteria which were Accuracy Drop, Power and Area utilizations. For this reason, this analysis 
consisted of two parts, a power modeling part held by Synopsys Design Compiler and provided Power 
and Area information about our components. The second part was the actual behavioral simulation 
firmware which handled the inference of the data and the output activation maps of the DenseNet121 
NN.  

The analysis of this section primarily focuses on the accuracy in the accuracy-based 
resiliency of the approximate components meaning that the output should be the impact of accuracy 
drop during the inference stage in NN models. To achieve that we kept the second part of our 
benchmarking flow and optimized it to fit this scope. 

 



   
 

   
 

 
Figure 16: Approximate Tiles Benchmarking Environment  

 

In Figure 16 the benchmarking flow is presented. The Verilog description of the approximate 
Tiles is being built using Verilator into the object file that is later used in the C++. Using this behavioral 
object along with the PyTorch shared library (libtorch) we manage to implement a convolutional layer 
that handles all the multiplication processes through our Approximate Tiles. 

After this layer (the Testbench) is being built, it is integrated via pybind11 in the Python 
Runtime as a top level PyTorch Convolutional Layer Function. This function is then placed into 
selected layers of the YOLOv6 NN and the inference can be executed like the provided flow suggests. 

Finally, the output activation maps from the behavioral simulation are compared with the 
preconfigured (SW tested) ones for the error to be calculated. 

 

3.5 Evaluation 

3.5.1 Introduction 

This section concludes our output with the result production from a close to the end layer of 
the YOLOv6 NN with approximation multiplication that picked as described in the previous sections. 
The accuracy drop was measured from the MSE values of the produced feature maps on each layer 
in combination with the bounding box object recognition produced from the final output layer. That 
exploration gave an estimation of the accuracy resiliency during different approximation techniques, 
evaluated in a close-to-the project NN model. 



   
 

   
 

3.5.2 Configurations 

For this evaluation we focused on the prediction stage of the YOLOv6, and we traced the 
convolution layers with a great impact to our analysis. After this exploration we concluded that the 
“cls_preds” block in the detection stage of the NN is a great fit to demonstrate the impact of our 
approximate multiplier components, because with no significant error propagation we can see both 
the output accuracy drop and the layer error metric. An abstract schematic of this block is present 
in Figure 17.  

 

Figure 17 :cls_preds Block. 

The configurations we tested were the above: 

• 0 – Apply the convolution layer only on the layer 0 
• 1 – Apply the convolution layer only on the layer 1 
• 2 – Apply the convolution layer only on the layer 2 
• All – Apply the convolution layer on all the layers (propagate the error) 

When we apply the convolution in all the layers, we calculate the error only on the last output. 

In terms of the hardware configuration, we are using 16x16 bit multiplication with the output 
of 32-bits per operation. The adding part is handled in the software side. 

For the inference we are using the weights from the yolov6s which came from training with 
the coco training dataset. The evaluation is performed using five images, three from the provided 
yolov6 repository and two random from web source. 

 

3.5.3 Results 

The results presented in Table 5 come from the evaluation of the five images in with DRUM 
(k=4,5,6,7) and with ROUP (p=1 and r= 10,12). For each multiplier tested, we present the MSE from the 
output Tensor compared to the software implemented one. This MSE comes as a metric across all 
the dimensions of the tensors produced to give a general metric of the quality of the output. The final 
accuracy drop is presented as compressed as possible in the form of the visual object recognition 
results in Figure 16. 

 

(cls_preds): ModuleList( 

      (0): Conv2d(32, 80, kernel_size=(1, 1), stride=(1, 1)) 

      (1): Conv2d(64, 80, kernel_size=(1, 1), stride=(1, 1)) 

      (2): Conv2d(128, 80, kernel_size=(1, 1), stride=(1, 1)) 

    ) 



   
 

   
 

Image  Config  DRUM4 DRUM5 DRUM6 DRUM7 
APR1_1

0 
APR1_12 

img1  

0  0.4963 0.4994 7.83 0.5 0.5 0.5 

1  0.4905 0.4948 5.21 0.4953 0.4953 0.4953 
2  0.1569 0.1582 4.66 0.1587 0.1585 0.1585 

all  0.1569 0.1582 4.66 0.1587 0.1585 0.1585 

img2  

0  0.6432 0.6506 8.06 0.6522 0.6523 0.6523 

1  0.6245 0.6290 5.08 0.6317 0.6317 0.6317 
2  0.1975 0.2006 4.49 0.2018 0.2015 0.2015 

all  0.1975 0.2006 4.49 0.2018 0.2015 0.2015 

img3  

0  0.5365 0.5413 8.86 0.5431 0.5430 0.5430 

1  0.6131 0.6180 5.54 0.6205 0.6207 0.6207 
2  0.2611 0.2638 4.89 0.2648 0.2646 0.2646 

all  0.2611 0.2638 4.89 0.2648 0.2646 0.2646 

img4  

0  0.5679 0.5757 8.56 0.5779 0.5779 0.5779 

1  0.5954 0.6004 5.38 0.6043 0.6046 0.6046 
2  0.5362 0.5393 6.26 0.5409 0.5406 0.5406 

all  0.5362 0.5393 6.26 0.5409 0.5406 0.5406 

img5  

0  0.6806 0.6842 8.74 0.6853 0.6851 0.6851 

1  0.5938 0.5975 6.33 0.5995 0.5994 0.5994 
2  0.0880 0.0897 4.97 0.0902 0.0901 0.0901 

all  0.0880 0.0897 4.97 0.0902 0.0901 0.0901 

 

                 Table 6 : Evaluation Results 



   
 

   
 

 
 

Figure 18 : Visual Approximation Results 

In Table 6 all the MSE values from different configurations are presented and in Figure 18 all 
the different object detection that is produced from the final outputs are also provided. The 
approximate implementation in Figure 18 is from the ROUP1,10 multiplier, but all the other 
implementation with the exception of DRUM6 have the same behavior. 

From the overall analysis we can see that applying the approximations techniques in the final 
layers introduces smaller error, but when comes to the detection result (Figure 18) we can see that 
the most information is being kept when approximations are introduced in layers 0 and 2, and if we 
want to cover the whole testing area we will keep only the approximation in layer 0, which is a valid 
conclusion due to the smaller sizes in that layer. Also, we can see that the best behaving multiplier in 
those cases is DRUM4 which also comes with greater energy and area gains. Also, we observe that 
DRUM6 performs strangely and produces lot of errors during inference stage. 

Finally, we see that in the output layer when the approximation is applied in all the layers of 
the block, the error propagation stays the same so we can continue evaluating the whole block by 
applying different approximation per layer to maintain stability with the same factor of accuracy 
resiliency. 

 



   
 

   
 

3.6 Future Work 

In the future we will try to implement multiple approximation units in deferent blocks further 
in the YOLOv6 NN to have a better exploration of the accuracy drop in a more generalized manner. 
Due to time limitations, we did not explore the infrastructure of YOLOv6 to the full potential of the 
object detection case. So, a next step in this will be a more precise exploration in terms of different 
layers in this model, as also described in the WP1 by the ViNotion partner in CONVOLVE. 

Furthermore, with the completion of the CGRA integration which will be also accompanied by 
the compiler integration then we will propose the best architecture configurations of the Blocks 
CGRA environment with the proper approximate tiles and the layers in both software and hardware 
context. 

4 Conclusions 
In conclusion, as neural network applications continue to grow in complexity and demand, 

innovative techniques such as near-threshold computing (NTC) and approximate computing are 
proving indispensable in addressing the escalating resource needs and energy consumption. By 
leveraging the inherent error resilience of neural networks, these approaches offer a viable trade-off 
between accuracy and energy efficiency. The enhancements to the ZigZag-IMC framework and the 
integration of PyTorchFI demonstrate our commitment to optimizing the performance of In Memory 
Compute (IMC) accelerators within these constraints. 

Furthermore, our ongoing research into approximate arithmetic components, specifically 
within the YOLOv6 neural network environment, inspired by the relation with one of the projects use 
cases provided by the ViNotion partner, highlights our pursuit of significant power and area gains, 
albeit with some accuracy trade-offs. The evaluation of this methodology was a behavior simulation-
based flow based on Verilator and integrated in PyTorch, and tested the multipliers as a component 
(Tile) of the R-Blocks CGRA accelerator, managing also instead of testing the multiplication impact, 
also test the component as an integratable module. 
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