

Seamless design of smart edge processors

GRANT AGREEMENT NUMBER: 101070374

Deliverable D6.3

Description SoC architecture, and the rapid design & prototyping environment

Title of the deliverable
Description SoC architecture, and the rapid design &
prototyping environment

WP contributing to the deliverable WP 6

Task contributing to the deliverable Task 6.3

Dissemination level PU – Public

Due submission date 30/04/2024

Actual submission date 30/04/2024

Author(s)

Ahmet Turan Erozan (BOS)

Andre Guntoro (BOS)

Ryan Antonio (KUL)

Guilherme Paim (KUL)

Moritz Scherer (ETHZ)

Internal reviewers
Tim Güneysu (RUB)

Gaizka Eiguren Arza (TASE)

Document
Version

Date Change

V0.1 26/03/2024 Initial version with ToC

V1.0 24/04/2024 The finalized draft ready to internal revision

V1.1 06/05/2024 The final document

Deliverable Summary .. 5

1. Objectives ... 5

WP6 Objectives ... 5

1.1.1. Deliverable D6.3 Objectives .. 5

WP6 Contribution to CONVOLVE’s Objective ... 6

2. SoC Architecture Overview .. 7

3. Rapid Design and Prototyping Environment .. 8

3.1. System Design Flow ... 8

3.2. Host Domain Design Challenges .. 8

3.3. Cheshire SoC Host ... 9

3.4. Core Complex ...10

3.5. Interconnect ... 11

3.6. IO Peripherals ... 12

3.7. Memory Hierarchy and Access .. 12

3.8. Interrupt Routing .. 13

3.9. Bender .. 13

3.10. Bender Example .. 14

3.11. Results and Future Work ... 16

4. Cluster Instantiation ... 16

4.1. Accelerator IP Integration Challenges ... 17

4.2. Solder ... 18

4.2.1. Solder Rapid Prototyping Flow .. 19

4.2.2. CDC and Protocol Adapter Instantiation ... 20

4.3. Results and Future Work... 21

4.4. Accelerator Template and Integration .. 21

4.5. SNAX Platform ... 22

3.10 SNAX Chisel ... 22

4.6 SNAX Development .. 24

4.6. SNAX Cluster ... 25

5. Conclusion .. 29

6. References ... 31

Deliverable Summary

This document provides the description of SoC architecture and rapid design & prototyping
environment, providing an overview of the System-on-Chip (SoC) architecture, emphasizing
the rapid design and prototyping environment. It outlines the system design flow, highlighting
the crucial steps involved in the flow. The document also delves into the host and peripherals,
discussing their integration and functionality within the SoC. Furthermore, it explores cluster
instantiation, shedding light on the process of creating and configuring clusters within the
architecture. Additionally, the document examines the accelerator template and integration,
showcasing the integration of specialized accelerators into the SoC design. Overall, this
comprehensive report offers valuable insights into the various components and design
aspects of the SoC architecture, providing a solid foundation for further exploration and
development.

1. Objectives

This document “D6.3 Description SoC architecture, and the rapid design & prototyping
environment” is a deliverable of the Work package No.6 “Compositional architecture DSE and
SoC generation”.

WP6 Objectives

WP6 deals with automated compositional system architecture design space exploration (DSE)
and system-on-chip (SoC) generation. This is done by providing a modular architecture
template consisting of a RISC-V host with one or multiple machine learning (ML) and security
accelerators.

The objectives of WP6 are defined as follows:

1) Provide a secure and modular RISC-V based SoC architecture template that eases the
integration of multiple accelerators, managing control, synchronization, data
exchange and run-time reconfiguration.

2) Create a SoC-level performance modelling framework for running ML applications on
the targeted modular runtime configurable architectures, integrating the component
models coming out of WP2.

3) Develop a rapid Design Space Exploration (DSE) framework to cycle quickly over ULP
SoC and accelerator constellations, finding the optimal balance between design-time
and run-time flexibility.

4) Realize an automated design time instantiation flow for optimal and run-time flexible
SoC generation.

1.1.1. Deliverable D6.3 Objectives

The deliverable D6.3 of WP6 describes the definition of SoC and rapid design & prototyping
environment within the context of CONVOLVE WP6. The objective of this deliverable is to
provide a comprehensive overview of the System-on-Chip (SoC) architecture, with a specific

focus on the rapid design and prototyping environment. It aims to outline the system design
flow, elucidating the key steps involved in the design process. Additionally, the report aims to
explore the integration and functionality of the host and peripherals within the SoC. It also
seeks to examine the process of cluster instantiation, emphasizing the creation and
configuration of clusters within the architecture. Furthermore, the report aims to showcase
the integration of specialized accelerators through the accelerator template. By achieving
these objectives, this report serves as a valuable resource for understanding the various
components and design aspects of the SoC architecture, facilitating baseline for further
exploration and development in this field.

WP6 Contribution to CONVOLVE’s Objective

WP6 focuses on the modular SoC design and rapid deployment which makes the work package
one of the contributors to achieve CONVOLVE’s target to reduce design time of edge AI
hardware systems by 10x by focusing on the faster design time of the SoC architecture and
providing a design space exploration tool for rapid software-hardware co-design explorations.
At the same time, WP6 is crucial to bring together all developed accelerators which are needed
to achieve CONVOLVE’s goal to achieve 100x energy efficiency improvement by providing an
SoC template with standard interfaces to a set of ultra-low-power ML and security
acceleration blocks which exploit novel architectures, microarchitectures, circuits and
devices.

To achieve these goals, it is necessary to have customizable hardware acceleration blocks that
can be parameterized during both design and run time using a standard interface. These
blocks should allow for various configurations based on diverse application needs, including
adjustments in supply voltage, clock frequency, data representation accuracy levels,
parallelization degrees and dimensionality precision values. WP6 focuses on providing a
modular and scalable SoC with such standardized interfaces such that the design acceleration
blocks can be plugged easily to reduce the overall design time.

In addition to the RTL design itself, performance models and simulators must also be
modifiable to enable fast exploration of the design-space without sacrificing compositional
flexibility. WP6 focuses also on automated design-space exploration (DSE) and simulators
using performance models of the hardware building blocks.

2. SoC Architecture Overview

Figure 1 provides an overview of the SoC template used in Convolve, which consists of two
main domains: the support infrastructure domain and the L2-accelerators domain. The
support infrastructure domain includes a RISC-V host, main memory, and peripherals. These
components are connected through a high-speed on-chip interconnect, such as a network-
on-chip (NoC) or AMBA AXI. This domain serves as the foundation of the SoC template. The
L2-accelerators domain comprises a set of L2 Snitch Cluster Accelerator Extension (SNAX)
clusters, which can contain the same type or a combination of different accelerators, but
same standard interface. One example to SNAX cluster is shown on the right side of Figure 1.
Within this cluster, general-purpose RISC-V cores can control the accelerators and share
tightly coupled data memory (TCDM) with accelerators.

FIGURE 1: OVERVIEW OF HIGH-LEVEL SOC TEMPLATE (SN: SNITCH, DMA: DIRECT MEMORY ACCESS, TCDM: TIGHTLY COUPLED DATA

MEMORY)

The following features are included in the SNAX cluster, ordered based on numbers on the
Figure 1. (1) A lightweight accelerator manager core implemented using a Snitch processor. (2)
Custom accelerators capable of running specific kernels based on user requirements. (3) A
tightly coupled data memory (TCDM) interconnect that connects the accelerator and Snitch
cores to the memory. (4) A shared multi-bank memory accessible to all accelerators and
cores. (5) A DMA core responsible for data movement between the wide and narrow AXI
interconnects (7) and (8), transferring data to and from an L2 memory outside the cluster
towards the local TCDM. (6) Shared instruction memory utilized by all Snitch cores. (7) A wide
interconnect with a bandwidth of 512 bits, facilitating data transfer from L2 to TCDM. (8) A
narrow interconnect enabling communication of shell data between TCDMs. The details of
each part of the SNAX can be found in Deliverable D2.2 “Report on the Micro-architecture
Design and Implementation”.

The current state of the SNAX platform allows users to explore basic architectural
possibilities. With a complete HW-SW setup, users can also profile their system and obtain

initial performance estimates. The integration of a new accelerator into the SNAX platform
has been simplified for user convenience.

3. Rapid Design and Prototyping Environment

This Section introduces the newly developed rapid design and prototyping flow for the
CONVOLVE project. Specifically, we first describe Cheshire, the SoC template used in
CONVOLVE, and Bender and Solder, two software tools for managing IP dependencies and
exploring AMBA AXI interconnect configurations.

3.1. System Design Flow

Architectural development, together with verification and physical implementation are often
considered the main efforts of new system design. Such efforts often rely on an effective and
structured management and integration of the components into the final design. Many
challenges of designing a new SoC originate from the inherent fluidity of its initial
specifications. System requirements may be incomplete, subject to change over the course
of a project or conditioned to events unrelated to the project, necessitating a design
approach that can accommodate ongoing modifications in functionalities and features. Such
modifications can have a cascading effect, impacting other aspects of the design. For
instance, replacing the CPU of the SoC host domain often necessitates adjustments to
various parts of the SoC, triggering a re-evaluation of some of the components that have been
already integrated. The process of new system design is inherently iterative.

The following sections introduce the complexities associated with rapid SoC prototyping.
Each section focuses on the unique challenges encountered within specific SoC domains.
Furthermore, these sections showcase the innovative solutions developed within the
CONVOLVE project to overcome these challenges.

3.2. Host Domain Design Challenges

Developing SoCs (System-on-Chip) with design-time reconfigurability offers significant
advantages, but it also presents unique challenges:

• Design Partitioning: Effectively partitioning the architecture of an SoC into well-
defined features is crucial for iterative development and meeting evolving design
requirements. An appropriate partitioning ensures ease of modification and enables
independent optimization of individual features.

• Standardized IP Interfaces: Standardization of interfaces between different
intellectual property (IP) blocks minimizes the effort required for integration.
Consistent interfaces allow for minimally invasive architectural modifications and
reconfiguration of IPs within the SoC.

• Automated IP Management: A robust framework for automated IP fetching and
version control is essential. An effective IP management strategy streamlines the
integration of IP dependencies and ensures compatibility throughout the design
process.

• Automated Script Generation: Often, the design flow utilizes several Electronic
Design Automation (EDA) tools from various vendors. A human friendly strategy for

generating scripts across these tools is necessary to automate design flow steps and
track design files used in different phases of the project.

These challenges necessitate a multi-disciplinary approach that merges expertise in
hardware design, software development, and system integration. Achieving an effective
design partitioning requires deep understanding of hardware architecture and
communication infrastructure design to ultimately ensure a good quality of result, i.e., flexible
data flow across various configurations and, at the same time, efficient utilization of silicon
area and low computational energy. Such expertise must be combined with In-depth
understanding of software development principles, driver design for adaptable hardware for
managing diverse configurations and guarantee usability of the system. Ultimately, a holistic
view of system integration, encompassing hardware and software interactions is required for
ensuring testability across different configurations, and usability of the SoC in the relevant
application scenario.

Besides expertise, achieving design-time reconfigurability of an SoC requires the possibility
to effectively modify the IPs that are integrated in the design. This might involve modifying IP
parameters to enable specific configuration options, but it could be as invasive as entirely
generating the IP source files from a configurable template.

In some cases, and very often when designing subsystems integrating CPUs, design-time
reconfiguration might necessitate modifying both hardware and software components
concurrently. The software stack needs to be adaptable to different hardware configurations.
In this context, the design framework might need to provide tools or methodologies for
generating configuration-specific software components or drivers. This must be combined
with hardware and software co-simulation tools and methodologies that enable joint
hardware-software exploration and optimization.

Ultimately, maintaining consistency between IP components becomes crucial. The
framework needs robust version control mechanisms to ensure compatibility among IPs and
avoid integration issues during the design process.

The next Section introduces the Cheshire SoC template, a foundational element within the
design flow developed in the CONVOLVE project. Cheshire plays a critical role in addressing
the challenges associated with design partitioning and efficient component interconnection.
It achieves this through the utilization of standardized communication interfaces.

Building upon the foundation laid by Cheshire, we present Bender, a dedicated software tool
designed to manage IP dependencies. Bender automates script generation for a majority of
the EDA tools commonly employed in SoC development. This automation capability
significantly reduces the overhead associated with IP dependency management.

3.3. Cheshire SoC Host

The design space exploration (DSE) developed in the CONVOLVE project is built around a
modular SoC host system. This host acts as the central control unit, orchestrating critical
functionalities that ensure the efficient operation of the System-on-Chip (SoC). The host
developed in the context of this project is derived from the openly available

(https://github.com/pulp-platform/cheshire). The block diagram describing the default
architecture of Cheshire is reported in Figure 2.

FIGURE 2: CHESHIRE SOC BLOCK DIAGRAM

By default, Cheshire uses a 64 Bit AXI crossbar that connects the Linux capable CVA61 core
with the rest of the system, including various I/O peripherals like SPI, GPIO, I2C, UART, and
JTAG. Cheshire features a SoC-level DMA which is responsible for efficient data movement
between the various IP blocks. However, Cheshire is ultimately a flexible aggregator of IPs
that provide an easy way to plug hardware accelerators, as the way it is partitioned allows for
changing any component inside. The next sections provide an overview of how the various
modules inside Cheshire can be adapted to different SoC requirements.

3.4. Core Complex

The Cheshire SoC template is built around a core complex hosting, by default, the CVA6
processor. These cores come pre-configured with hypervisor and Core Local Interrupt
Controller (CLIC) support for advanced virtualization and interrupt handling capabilities.

Users can define the number of CVA6 cores instantiated within the SoC, ranging from a single
core to a maximum of 31. Additionally, parameters like the depth of the CVA6 return address
stack and the size of internal structures like the Branch Target Buffer (BTB) and Branch
History Table (BHT) can be adjusted to fine-tune core behavior.

For communication with external memory, Cheshire utilizes the AXI4 bus protocol. Each CVA6
core acts as an independent AXI4 master, capable of initiating data transfers. To maintain
data consistency across multiple cores, Cheshire employs a self-invalidation scheme. This

1 https://github.com/openhwgroup/cva6

https://github.com/pulp-platform/cheshire
https://github.com/openhwgroup/cva6

means cores automatically invalidate their cached copies of data whenever they modify that
data, ensuring all cores have the latest version.

A unique aspect of Cheshire lies in its handling of RISC-V atomic instructions. These special
instructions allow for synchronized memory access operations essential for multi-core
programming. Cheshire implements a custom AXI4 extension that relies on user channels to
facilitate these atomic operations. Each core and other AXI4 masters are assigned a
dedicated user channel and a unique identifier within a designated user channel bit slice. This
mechanism ensures efficient and coordinated execution of atomic instructions across
multiple cores.

In the context of the CONVOLVE project, we plan to replace the RV64A CVA6 core with a low-
power 32-bit RV32IMC configuration to maximize energy efficiency for a microcontroller class
system as designed in CONVOLVE. The IMC configuration supports standard integer
operations as well as multiplications, and improves cache performance and energy efficiency
through the use of compressed instructions.

3.5. Interconnect

The Cheshire SoC template employs a hierarchical interconnect strategy to achieve a balance
between performance and cost. Agents requiring high data transfer bandwidth are connected
to the High-Performance AXI4 Crossbar. This component implements the AXI4 protocol. It
supports Atomic Operations (ATOPs) for synchronized memory access crucial in multi-core
systems. The AXI4 crossbar exposes various configurable parameters, allowing for fine-
tuning aspects like data width, maximum in-flight transactions, and user channel allocation
for RISC-V atomic operations. Additionally, Cheshire offers optional features for the AXI4
interconnect:

• AXI-RT: This adds traffic regulation units for individual AXI4 masters, enabling
bandwidth and traffic control for real-time applications.

• BusErr: This integrates an error reporting mechanism for the AXI4 masters, reporting
errors through a dedicated Regbus interface.

Agents requiring low data transfer bandwidth are connected to the AXI4 crossbar through a
cost-effective Regbus demultiplexer. This component utilizes the Regbus protocol. While
less performant than AXI4 due to limitations in burst transfers and pipelining, Regbus offers
a simpler and significantly cheaper implementation. It provides access to various peripherals
and configuration interfaces within the SoC. The Regbus protocol operates with a fixed 32-
bit data width. This combined approach allows Cheshire to leverage the high-performance
AXI4 for critical data paths while utilizing the cost-effective Regbus for peripheral
interactions. This hierarchical structure significantly improves interconnect scalability,
enabling efficient communication within the SoC while keeping the SoC interconnection
complexity low.

Both the AXI4 crossbar and the Regbus are parametrized components. The parameters allow
for customization of the AXI4 and Regbus components, tailoring their behavior to specific
design requirements. Additionally, the configurable number of external ports on both AXI4
and Regbus facilitates integration with external memory systems employed by surrounding
SoCs.

3.6. IO Peripherals

The Cheshire SoC template offers a rich set of peripherals for designers to integrate into their
custom SoCs. Here's a breakdown of some key components:

• VGA Controller: This peripheral allows for displaying video frames stored in memory
on a VGA interface. It operates autonomously, fetching data through an AXI4 manager
port.

• OpenTitan Peripherals: The I2C host, SPI host, and GPIO interface leverage OpenTitan
IP blocks [A reference needed here], adapted for use within the PULP platform. These
peripherals maintain compatibility with OpenTitan's device interface functions (DIFs)
with minor modifications.

• UART: This serial communication interface is compatible with the industry-standard
TI 16750, ensuring seamless integration with popular operating systems like OpenSBI,
U-Boot, and Linux. Notably, Cheshire exposes the modem access control functionality
for systems requiring such features.

The Cheshire SoC template integrates a RISC-V compliant debug module to aid in
development and troubleshooting. This module supports the JTAG protocol for external
debugging and offers functionalities for both internal and external processor cores (harts).
Additionally, it provides access to the system bus for memory inspection and manipulation.

3.7. Memory Hierarchy and Access

The Cheshire SoC template relies on external memory for its main storage. However, several
internal components play crucial roles in memory management and the boot process:

• Last Level Cache (LLC): This on-chip cache acts as a buffer between the SoC and
external memory (typically DRAM). It caches all memory accesses unless explicitly
bypassed. Notably, the LLC can be configured to function as scratchpad memory
(SPM) during the initial boot stage. This allows the boot ROM to utilize the LLC as
temporary working memory for loading code from external storage. The LLC can be
entirely omitted if a more complex external memory system is used. However, an
external scratchpad memory would still be necessary for booting bare-metal code
from local memory.

• Boot ROM: This embedded ROM contains the initial code executed by the SoC after
reset. Its primary function is to safely and efficiently load a main program from an
external source into memory.

• iDMA Engine: This hardware component implements high-speed data transfers
between any two memory locations within the system. This component supports two-
dimensional data transfers efficiently.

To reduce the memory access energy and shrink the overall power envelope of the SoC
domain, we plan to replace the LLC with a dedicated L2 scratchpad memory.

3.8. Interrupt Routing

The Cheshire SoC employs a flexible RISC-V interrupt architecture to efficiently manage
interrupts from both internal components and external devices. This system allows for
routing and directing these interrupts to various controllers and targets within the SoC.

The internal interrupt map is statically defined, simplifying interrupt handling for internal
components. Conversely, the handling of external interrupts can be customized based on the
surrounding system configuration. This allows the Cheshire SoC to adapt to various setups
involving different external devices and peripherals.

The Interrupt Routing Process works as follows: All interrupt sources, internal and external,
are first collected into a single pool. If the interrupt router is enabled, it takes over, routing
and multiplexing the interrupts efficiently. When the router is disabled, the interrupts are
directly distributed (fanned out) to the interrupt targets. It's important to note that targets
may have limitations on the number of interrupts they can handle. Any exceeding interrupts
are simply ignored in such scenarios.

The Cheshire SoC offers a range of interrupt targets, including:

• Core-Local Interrupter (CLINT): This internal component groups all interrupt requests
from a single core, primarily handling inter-processor and timer interrupts.

• Shared Platform-Level Interrupt Controller (PLIC): This controller acts as a central hub
for interrupt handling within the entire platform.

• Optional Core-Local Interrupt Controller (CLIC): Each CVA6 core can optionally have
its own CLIC, providing another target for interrupts.

• External Interrupt Targets: The system can be configured with a user-defined number
of external targets, each with its own capabilities for handling interrupts.

The PLIC and grouped CLINT can be configured to manage interrupts for external processor
cores (harts) that lack their own internal interrupt controllers. This allows the Cheshire SoC to
seamlessly integrate with various system configurations.

3.9. Bender

Bender (https://github.com/pulp-platform/bender) is a powerful solution for managing
dependencies within hardware design projects, specifically targeting Intellectual Property
(IP) integration. This dependency management tool enables a streamlined workflow by
describing the definition of dependencies between IPs and the source file compatibility with
various simulation and synthesis tools.

Bender prioritizes user autonomy. It eschews restrictions on specific Electronic Design
Automation (EDA) tools, workflows, or IP directory structures. Additionally, being compiled as
a single executable, it can be easily integrated into established development pipelines, e.g.,
based on Makefiles.

Reproducibility is another goal of Bender. Once dependencies are fetched It tracks the git
hash for each dependency within a lock file. This record allows for the reconstruction of a
project's source code even after a significant timeframe has elapsed, guaranteeing a reliable
historical record, crucial when multiple parts of the design change concurrently.

https://github.com/pulp-platform/bender

Bender operates in a three-tiered approach:

• Source File Collection: Bender efficiently gathers source files from hardware IPs,
maintaining the correct order (e.g., ensuring package declarations precede usage)
and supporting multiple hardware description languages like SystemVerilog and
VHDL. It facilitates the organization of files into logical groups and manages, defines
and includes directories for each group.

• Dependency Management: Bender tracks dependencies between IPs and
streamlines the process of local checkouts for the necessary source files. It supports
transitive dependencies (dependencies of dependencies) and enforces strict
adherence to semantic versioning for clear communication of compatibility changes.
Notably, Bender deviates from traditional package managers by not relying on a
central registry. This caters to the often confidential nature of IPs within a project.

• Tool Script Generation: Bender further optimizes the development workflow by
generating scripts for various tools. These scripts can be source file listings or
compilation scripts tailored to specific tools.

The package manifest describes the package, its metadata, its dependencies, and its source
files. All paths in the manifest may be relative, in which case they are understood to be relative
to the directory that contains the manifest.

3.10. Bender Example

We show an example for the bender configuration of Cheshire, the basis of the SoC used in
the CONVOLVE project. All fundamental IP blocks, including the CVA6 cores, iDMA, debug unit
and CLINT are declared as dependencies. Next, by running bender checkout, the
corresponding dependencies are downloaded from their open-source repositories. Examples
of the Bender.yml file are shown in Figures 3 and 4.

FIGURE 3: BENDER.YML DEPENDENCY MANAGEMENT FILE SHOWING THE INTEGRATION OF VARIOUS HARDWARE IPS FROM GITHUB.

FIGURE 4: BENDER.YML DEPENDENCY MANAGEMENT FILE SHOWING THE FILES AND THEIR COMPILATION ORDER FOR THE CHESHIRE

PROJECT.

Using these checked out dependencies, simulation and elaboration scripts can be auto-
generated by generating for one the numerous supported targets like vsim, vcs & verilator for
simulation and synopsys, genus, and vivado for synthesis targets, where the command is
structured `bender script TARGET`. Figures 5 and 6 show automatically generated simulation
elaboration and synthesis elaboration scripts for Questasim and Synopsys respectively.

FIGURE 5: QUESTASIM ELABORATION SCRIPT AUTOMATICALLY GENERATED BY BENDER.

FIGURE 6: SYNOPSYS ELABORATION SCRIPT AUTOMATICALLY GENERATED BY BENDER.

Using Bender to generate elaboration scripts automatically not only avoids tedious manual
scripting of boilerplate code, but also avoids errors in elaboration order and dependency
management, which can cause hard to trace bugs.

3.11. Results and Future Work

We have specified the final SoC template to be used in the CONVOLVE project based on the
Cheshire SoC. We have also integrated Cheshire with Bender, which allows us to easily add
new accelerator IPs, generate elaboration and simulation scripts automatically, and manage
versions of shared dependencies between all IPs.

In future work, we will update the Cheshire SoC with a 32-bit CVA6 core and replace the LLC
with an L2 scratchpad memory.

4. Cluster Instantiation

Integrating multiple accelerator cluster Intellectual Properties (IPs) into System-on-Chips
(SoCs) presents numerous challenges. This Section gives an overview of the challenges we
address in the CONVOLVE project through automated tooling for IP integration on the cluster
level.

The CONVOLVE project’s SoC template offers three integration possibilities, L0, L1, and L2
accelerators, as explained in Deliverable D6.1. The protocol used for L2 accelerators,
Advanced eXtensible Interface (AXI), is well-suited to integrate multiple concurrent Snitch
and SNAX clusters, as it supports high data rates through features like burst transfers and
split transactions. In AXI, data transfers are decoupled through split transactions into
address/control and data phases, simultaneously allowing multiple outstanding transactions.
This significantly improves the utilization of the SoC’s main bus, as the interface can handle
new requests even before the current transaction is completed.

In the following, we describe the challenges of integrating clusters within SoCs and introduce
the Solder tool, which helps addressing the challenges.

4.1. Accelerator IP Integration Challenges

While most IPs in the SoC operate in a single synchronous clock domain, the accelerators are
intended to provide high throughput, meaning the SoC must accommodate the accelerator’s
frequency requirements. As such, the accelerators in the CONVOLVE project must be able to
operate at frequencies different from those of the main SoC.

To communicate with the SoC, compute clusters must cross clock domains. Clock domain
crossings (CDCs) are an important challenge, as improper synchronization may lead to
metastability, a condition that occurs when a flip-flop receives a change of its input signal
close to the transition edge of its clock signal, violating the setup condition. In these
conditions, the flip-flop may enter an undefined state for an unpredictable duration,
potentially leading to data corruption and system instability.

Addressing metastability is challenging, as metastability is a condition that arises non-
deterministically, making it hard to capture in traditional digital verification flows. An example
of a metastable condition is shown in the Figure 7.

FIGURE 7: EXAMPLE OF A METSTABLE OPERATING CONDITION.

Besides the challenge of correctly identifying and constraining CDCs, every cluster has to be
assigned a unique, non-overlapping address range. This address range is used to map all
globally addressable registers and memories of the cluster, making them accessible from the
SoC or other clusters. This address range must be propagated to every endpoint of the AXI
interconnect; this process is error-prone, especially when integrating multiple cluster IPs
using differently sized L1 memories or when exploring different cluster configurations.

Correctly propagating address ranges through interconnects becomes more challenging
when exploring different interconnect topologies. The choice of interconnect topologies
ranges from fully flat crossbar configurations to deeply hierarchical routing trees, which
allows to trade-off throughput and contention with the area and routing congestion of the
interconnect. This is especially relevant for multi-tile SoC architectures, where many
accelerators must communicate with the SoC’s memories and peripherals, as the area and
energy cost of full crossbar configurations scale quadratically with the number of AXI
masters.

Scaling interconnects hierarchically solves this problem but requires tedious reconfiguration
of low-level Register Transfer Level (RTL) code. Moreover, finding an optimal configuration
trade-off for interconnects is a challenging design problem and requires design space
exploration.

In summary, the key challenges for generating scalable interconnects for multi-tile AI SoCs lie
in three key problems:

• Verifying correctness of address ranges for interconnect endpoints
• Rapid reconfiguration of complex, multi-tiered hierarchical interconnects
• Correct insertion and constraining of clock domain crossings

In the next Section, we present our CONVOLVE work on Solder, an interconnect generation
tool for AXI interconnects, which addresses the core challenges that present itself in
heterogeneous multi-tile SoCs.

4.2. Solder

As discussed in the previous Section, solving the various design challenges of multi-tile SoCs
requires a structured approach to interconnect design. To address these challenges, we
developed Solder, a tool to generate complex interconnects automatically.

Solder is a Python application that instantiates hand-optimized, open-source System Verilog
AXI modules according to topology specifications from JSON files. Solder uses the Mako
template system publicly available as a Python library, to instantiate various AXI modules.

We break down the design time benefits of Solder into two sections; First, we show how
Solder can be used to construct AXI interconnects and verify address maps, generating
correct-by-construction interconnects. Next, we explain how Solder can automatically
instantiate appropriate CDC IPs. Finally, we go over applications of Solder in Design Space
Exploration (DSE) for AXI interconnects.

4.2.1. Solder Rapid Prototyping Flow

The core abstraction in Solder is the AddrMap graph, which models the connections between
AXI crossbars and connections with AXI endpoint IPs.

To generate an interconnect with Solder, the designer first provides an addressmap
describing each endpoint's address range. Using this addressmap, and a JSON-based
configuration for the individual crossbars used in the design, Solder offers a high-level
descriptive interface that allows users to connect endpoints to the other nodes, like AXI
crossbars. An example of the high-level API used to instantiate interconnect components and
attach IPs is shown in Figure 8.

FIGURE 8: EXAMPLE OF A SOLDER SCRIPT TO MODEL THE NARROW INTERCONNECT OF AND SOC.

During the construction of this graph, address rules are generated and propagated through
the interconnect structure; this is critical to avoid address map conflicts and ensure correct
communication between all endpoints.

While generating interconnects, Solder inserts several standard AXI IPs in appropriate
locations automatically; for example, when connecting a wide AXI crossbar with a large
transfer size to a narrow AXI crossbar, Solder inserts AXI width and index converters
automatically, which take care of converting transfer sizes for correct communication, as
shown in Figure 9.

FIGURE 9: OVERVIEW OF THE SOLDER PROTOTYPING FLOW: USING A JSON CONFIG, SOLDER INSERTS AXI IPS INTO SYSTEM VERILOG

SOURCE FILES.

Using this functionality, Solder supports rapid prototyping of AXI crossbar widths without
tedious manual adaption of RTL code, enabling DSE on the SoC level. Solder supports arbitrary
AXI interconnect configurations, allowing to prototype and integrate hierarchical
interconnect structures easily. Solder further supports automatic protocol conversion
between AXI and AXI Lite and the insertion of CDC IPs to synchronize clock domain crossings.

4.2.2. CDC and Protocol Adapter Instantiation

A critical aspect of multi-tile heterogeneous SoCs developed in the CONVOLVE project is
clock domain crossing synchronization of asynchronous IP blocks, like clusters. Especially for
wide buses, synchronization IPs must be carefully designed and well-constrained to avoid
metastability effects.

Solder facilitates implementing CDCs by exposing a high-level API to specify the insertion of
CDC IPs. An example of the configuration and the generated System Verilog to instantiate a
CDC FIFO is shown in Figures 10 and 11.

FIGURE 10: OVERVIEW OF SOLDER DESCRIPTIONS OF AXI PROTOCOL ADAPTERS THAT ARE AUTOMATICALLY CONFIGURED USING THE

JSON CONFIG.

FIGURE 11: OVERVIEW OF THE AUTOMATICALLY GENERATED PROTOCOL ADAPTERS AND CDCS USING SOLDER.

4.3. Results and Future Work

We have implemented Solder, a Python-based tool for generating AXI interconnects. We have
tested Solder on several important topologies relevant to multi-tile SoCs. Thanks to the
reconfigurability and high-level API, Solder reduces the design- and evaluation time for AXI
interconnects significantly, allowing for faster iterations, and, ultimately, higher quality of
results in interconnect design.

For future work, we will integrate the Solder prototyping flow with the Cheshire SoC template
to enable rapid prototyping on the SoC level, including the integration of Cluster IPs.

4.4. Accelerator Template and Integration

Integrating accelerators is challenging due to the variety of customized kernels and
customized designs of each accelerator. Specifically, we have two main problems with
integrating multiple accelerators: (1) There does not exist a standard interface that enables
smooth accelerator integration at the hardware level while being trans- parent in software. We
need this for controlling accelerators with ease. (2) Every accelerator requires custom data
and memory layouts to support accelerator- specific data access patterns for efficiency
reasons.

To solve these challenges, we developed the SNAX platform to provide uniformity at the
hardware and software interfaces and supporting modules to handle the customized data

accesses of accelerators. It is an extension of the existing Snitch cluster, but with heavy
modifications that can provide convenience to accommodate multiple heterogeneous
accelerators.

4.5. SNAX Platform

Figure 12 shows an overview of the entire SNAX platform system. We divide it into three
sections: (1) SNAX-Chisel contains Chisel generated modules and support for quick and
parametrized accelerator designs, (2) SNAX-Development serves as an intermediate test
bench for testing and verification of designs before it connects to the actual cluster, and (3)
the SNAX cluster, which is the main compute cluster containing the memories, peripherals,
cores, and AXI interconnects for scalability. We’ve organized the platform in these three
sections to make the development modular.

FIGURE 12: OVERVIEW OF SNAX PLATFORM SHOWING DIFFERENT SECTIONS OF DEVELOPMENT

3.10 SNAX Chisel

SNAX Chisel contains chisel generated modules and accelerators made for the SNAX cluster.
Since this system upholds the idea of open-source development, Chisel is a powerful open-
source to streamline parametrized designs. Parametrized designs are seen in several
accelerators like the general matrix-matrix (GeMM) or single input multiple data (SIMD)
accelerators. These accelerators can be parametrizable like the bandwidths, the number of
processing elements, and the number of I/O ports. For example, the GeMM accelerator shown
in Figure 13, can have parametrized sizes for its processing elements.

FIGURE 13: 2-D DIGITAL GEMM ACCELERATOR WITH PARAMETRIZABLE SIZES

Another example can be based on the SIMD post-processing unit, which could have any
kernel inside it, as shown in Figure 15.

FIGURE 14: SIMD ACCELERATOR WITH PARAMETRIZABLE PROCESSING ELEMENTS

In both cases, we use chisel to generate these designs which can be conveniently hooked up
into our SNAX cluster later. The GeMM is available at GitHub: https://github.com/KULeuven-
MICAS/snax-gemm while the SIMD is also available at GitHub: https://github.com/KULeuven-
MICAS/snax-postprocessing-simd

Efficiently loading and storing data between memory and accelerators is crucial for the
dataflow of accelerators while accommodating diverse data access patterns. To address this,
we developed a design-time configurable streamer generator that is further run-time
programmable. This generator produces hardware streamers that continuously manage
multiple data streams between memory and accelerator data path, in a programmable manner.
This module aims to alleviate the design complexity of accelerator designers, since this
already provides the data access decoupling the design of the accelerator data path. Figure 15
shows this streamer accelerator.

FIGURE 15: STREAMER MODULE TO DECOUPLE ACCELERATOR DATA PATH FROM MEMORY ACCESSES

The microarchitecture of the data streamer comprises of four main components: the data
movers (read and write), address generation unit, FIFO buffers, and the CSR manager. Data
readers manage data loading, while data writers handle data storing to and from the shared

https://github.com/KULeuven-MICAS/snax-gemm
https://github.com/KULeuven-MICAS/snax-gemm
https://github.com/KULeuven-MICAS/snax-postprocessing-simd
https://github.com/KULeuven-MICAS/snax-postprocessing-simd

memory ports. Each data mover includes an individually programmable address generation
unit (AGU) for autonomous operation. FIFO buffers employ a prefetch mechanism to mitigate
data contentions, ensuring continuous data fetching for accelerator ports hiding contention
occurrences. Lastly, the CSR manager oversees the CSR commands, which allow the CPU to
program for each streamer port the base memory R/W address, as well as the memory stride.
It also has a double-buffered CSR for pre-loading CSR configurations while an ongoing task is
running. The interface towards the accelerator is a simple data channel with a decoupled
interface (valid-ready protocol).

The streamer developed was aimed for users to focus more on the data path of the
accelerator. Hence, we highly recommend using our parametrizable streamers when
integrating accelerators to our system. The streamer module is available at our GitHub page:
https://github.com/KULeuven-MICAS/snax-streamer

It should be noted that in the same level of the SNAX Chisel, some other accelerator designers
may have their own custom accelerator design in RTL or some other method. This is just to
visualize that at this level, we focus more on the stand-alone accelerator design. We’ve
considered the possibilities that some designers may have their own accelerator
implementation strategy.

4.6 SNAX Development

The second section is the SNAX Development which is meant for intermediate verification
before plugging into the actual SNAX cluster. Specifically, users need to (1) make a wrapper
that complies with the interface of the SNAX cluster, and (2) work on some rigorous verification
that’s easier to monitor. It emulates the SNAX cluster shell but without all the additional
peripherals and control (e.g., CPU core, AXI interconnects, shared peripherals … etc.). It only
contains a tightly coupled data memory (TCDM) interconnect, a memory-subsystem, and a
Cocotb driver. Figure 16 shows the simplified SNAX development system:

FIGURE 16: SNAX DEVELOPMENT DIAGRAM

The memory is reconfigurable like how it is from the SNAX cluster (see next subsection). We
can configure the number of banks, the number of data widths, and the total memory size. The
interconnect is a complex interconnect hooked to the accelerator to handle memory requests
and data contentions. The accelerator is any custom accelerator a user may integrate, and the
Cocotb driver is a Python package1 used for driving stimuli.

https://github.com/KULeuven-MICAS/snax-streamer

In the SNAX development component, users can do better verification of their accelerator
system without having to go through the complexity of the software setup of the SNAX cluster.
This is especially useful for hardware designers who just need to focus on what happens on
the signal level which are not immediately transparent to the software side. The Cocotb driver
is the most tool for verification because the stimulus is driven by a Python program which is
easier to driver than in vanilla Verilog testbench stimuli.

Moreover, there is a set of utility Python scripts for generating stimuli. Since the SNAX cluster
uses a register-mapped interface to control the accelerators, then writing or reading registers
just uses simple register commands. We also provide an emulation of a DMA transfer from the
Cocotb driver as well.

The other goal of the SNAX-dev is to prepare the immediate wrappers for easy integration into
the SNAX cluster. There are examples that show how to re-map signals from a custom
designed accelerator to comply with the simplified interface of the SNAX cluster. With the
wrappers already prepared by the SNAX-dev level, integrating into the SNAX cluster is easy
since it complies with the custom interface.

The idea is that after development and testing is done in the SNAX-dev, benderizing the
components into the SNAX cluster makes it convenient for integration. We just need to update
the Bender file from the SNAX cluster, and it automatically pulls in the components from the
SNAX-dev repositories.

From Figure 12, we can see that each GeMM, and SIMD accelerators each have their own SNAX-
dev setups. Interestingly, each setup uses the SNAX chisel generated hardware. Especially
the streamer which is an integral part of the accelerator because both GeMM and SIMD are just
data path components. There exists a reshuffle and custom accelerators that are not
developed with Chisel, but with vanilla Verilog code. However, since the streamer is important
for accessing data, we can combine the custom accelerators with the generated streamers.

4.6. SNAX Cluster

FIGURE 18: SNAX ACCELERATOR-CENTRIC COMPUTE CLUSTER

The SNAX cluster is the main system that integrates all accelerators and has all the peripherals
added to it. Figure 18 shows this. It contains the main memory, a complex TCDM interconnect,
Snitch cores for controlling the accelerators, an instruction cache that shared with all the
Snitch cores, a DMA to transfer data from an external memory and into the TCDM memory, and
AXI interconnects for communicating outwards of the cluster.

The SNAX cluster has several design-time configurations, but a few are notable ones are:

• Number of Snitch cores.
• Number of accelerators controlled per each Snitch core.
• List of accelerators to attach.
• Number of accelerator ports, bandwidth of each port, and how to connect to the

complex TCDM.
• Memory size and number of banks.

These notable configurations are the basics for designing the architecture. Since SNAX is an
extension of the original Snitch cluster, the cluster is generated through a template with a set
of configurations. Figure 19 shows a sample template configuration that also includes other
customizable features:

FIGURE 19: EXAMPLE CONFIGURATION FOR A SNAX CLUSTER

From this configuration, we have a SNAX accelerator set that describes what accelerator to
add, the number of TCDM ports it uses, the number of accelerators is controlled with one core,
and configurations to indicate how it connects to the TCDM interconnect.

It is worth noting that there are two kinds of TCDM interconnects, a narrow interconnect that
has a low bandwidth (64 bits per port) and a wide interconnect that has a higher bandwidth (512
bits per port). The narrow interconnect has fine-grained access to the memory but has higher
interconnect complexity as the number of accelerator or core ports increases. The wide
interconnect has a higher granularity of access making it less flexible since it needs to access
data in super banks (as indicated by the sub boxes in the memory). The wide interconnect:
however, has a smaller number of ports to manage and therefore has less circuit complexity.

With the accelerators prepared in the SNAX development phase, these are easily integrated
into the system. The SNAX cluster uses RISCV CSR instructions to control the accelerators.
We have examples of prepared libraries showing functions with inline assembly instructions in
C code to control the accelerators. Because of the register-mapped interface and the CSR
instruction control, we can conveniently control the accelerators by just modifying the register
configurations. The Figure below shows a code snippet of the SNAX GeMM library showing how
to program the accelerator:

FIGURE 20: EXAMPLE PROGRAM FOR CONFIGURING THE GEMM

To demonstrate one of our earlier prototypes, we combined three accelerators: a GeMM, a
SIMD rescaler, and a data reshuffle. The Figure below shows this architecture:

FIGURE 21: AN EXAMPLE INCLUDING A NARROW STREAMER-RESHUFFLER, NARROW-WIDE STREAMER-GEMM AND WIDE STREAMER-
SIMD.

In this prototype, the GeMM does an 8x8x8 (8x8 matrices with 8-bit integers each element). It
has two input ports, where each takes in 512 bits of 8x8x8 matrices each port. It produces an
8x8 matrix with 32-bits per element, resulting in a 2,048 bits bandwidth for the output. To
reduce the complexity of the narrow interconnect, we maintained the inputs of the GeMM on
the narrow interconnect and placed its output on the wide interconnect instead. Since the
output of the GeMM occupies all 32-banks (each bank is 64 bits) then it makes sense to place it
on the wide interconnect instead. The SIMD is a rescale accelerator that takes the 8x8x32 and
rescales it back to 8x8x8 to be used in another subsequent matrix multiplication of size 8x8x8.
The data reshuffler is a supporting module that is aimed for transposing matrices. For matrix
sizes that are larger than 8x8, (e.g., 16x16 or 32x32) we need to divide the matrix into sub-
matrices. In operations that require transposes like AxBT we need to have a dedicated
reshuffle to handle element-wise transpositions. This example demonstrates how we can
easily integrate multiple heterogeneous accelerators in a single shared memory system.

With the complete SNAX platform, we re-iterate the main sections: (1) SNAX Chisel contains
Chisel generated hardware accelerators, and this is where we generate our accelerators. If a
user has their own custom accelerator, they can utilize the parametrizable streamer to be
augmented into the main datapath. (2) The SNAX development is used as an intermediate
verification step. The goal is to create a wrapper that connects correctly into SNAX cluster and
to do more rigorous verification before the final integration. Users can also test and monitor
the mechanisms in the SNAX development phase. Lastly, (3) is the SNAX cluster with design-
time customization on how to connect the accelerators into Snitch cores and into the TCDM
memory. With the uniformity of the hardware and software interfaces, and with the
customization of data accesses the SNAX platform provides a convenient way for users to
integrate their custom accelerators.

5. Conclusion

This report provides a comprehensive overview of SoC architecture and the rapid design and
prototyping environment. The report began by outlining the objectives, setting the foundation
for the subsequent discussions. It then delved into the SoC architecture overview, explaining
the key elements and interconnectivity within the system. The rapid design and prototyping
environment were thoroughly explored, highlighting the tools and methodologies employed to
accelerate the design cycle.

The significance of SoC architecture lies in its ability to integrate diverse components and
subsystems into a cohesive system. The support infrastructure domain, interconnected with
L2-clusters, enables rapid SoC generation. This architecture facilitates the integration of
various accelerators, such as RISC-V cores with various accelerators sharing tightly coupled
data memory (TCDM).

The rapid design and prototyping environment play a crucial role in reducing time-to-market
and enhancing productivity. By utilizing advanced tools and methodologies, designers can
efficiently generate their SoC designs while reducing the risk of potential issues thanks to
reused IPs.

It is important to acknowledge the limitations of this report, such as the focus on an initial
architecture and its prototyping environment. Further research can explore improved
architectures to overcome challenges such as processing, interconnect and memory
bottlenecks.

In conclusion, the report provides detailed information on SoC architecture and the rapid
design and prototyping tools and environment in enabling efficient and effective SoC designs.
By leveraging these approaches, designers can navigate the complexities of modern chip
design and deliver innovative solutions in a timely manner.

6. References

[1] N. Bruschi, G. Haugou, G. Tagliavini, F. Conti, L. Benini, and D. Rossi, “GVSoC: A
Highly Configurable, Fast and Accurate Full-Platform Simulator for RISC-V based
IoT Processors,” in Proceedings - IEEE International Conference on Computer
Design: VLSI in Computers and Processors, Institute of Electrical and Electronics
Engineers Inc., 2021, pp. 409–416. doi: 10.1109/ICCD53106.2021.00071.

[2] N. Bruschi et al., “Scale up your In-Memory Accelerator: Leveraging Wireless-on-
Chip Communication for AIMC-based CNN Inference,” in Proceeding - IEEE
International Conference on Artificial Intelligence Circuits and Systems, AICAS
2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 170–173.
doi: 10.1109/AICAS54282.2022.9869996.

[3] A. Garofalo et al., “A 1.15 TOPS/W, 16-Cores Parallel Ultra-Low Power Cluster with
2b-to-32b Fully Flexible Bit-Precision and Vector Lockstep Execution Mode,” in
ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference, Proceedings,
Institute of Electrical and Electronics Engineers Inc., Sep. 2021, pp. 267–270.
doi: 10.1109/ESSCIRC53450.2021.9567767.

[4] “STM32L4R5xx STM32L4R7xx STM32L4R9xx.” [Online]. Available: www.st.com
[5] “This is information on a product in full production. STM32U575xx Ultra-low-

power Arm ® Cortex ®-M33 32-bit MCU+TrustZone ® +FPU, 240 DMIPS, up to 2 MB
Flash memory, 786 KB SRAM Datasheet-production data Features Includes ST
state-of-the-art patented technology Ultra-low-power with FlexPowerControl
Core • Arm ® 32-bit Cortex ®-M33 CPU with TrustZone ® , MPU, DSP, and FPU,”
2023. [Online]. Available: www.st.com

[6] J. Yue et al., “7.5 A 65nm 0.39-to-140.3TOPS/W 1-to-12b Unified Neural Network
Processor Using Block-Circulant-Enabled Transpose-Domain Acceleration with
8.1 × Higher TOPS/mm2and 6T HBST-TRAM-Based 2D Data-Reuse Architecture,”
in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), 2019, pp. 138–
140. doi: 10.1109/ISSCC.2019.8662360.

[7] Z. Yuan et al., “A Sparse-Adaptive CNN Processor with Area/Performance
balanced N-Way Set-Associate PE Arrays Assisted by a Collision-Aware
Scheduler; A Sparse-Adaptive CNN Processor with Area/Performance balanced
N-Way Set-Associate PE Arrays Assisted by a Collision-Aware Scheduler,” 2019.

[8] J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H.-J. Yoo, “7.7 LNPU: A 25.3TFLOPS/W
Sparse Deep-Neural-Network Learning Processor with Fine-Grained Mixed
Precision of FP8-FP16,” in 2019 IEEE International Solid- State Circuits
Conference - (ISSCC), 2019, pp. 142–144. doi: 10.1109/ISSCC.2019.8662302.

[9] J. Song et al., “7.1 An 11.5TOPS/W 1024-MAC Butterfly Structure Dual-Core
Sparsity-Aware Neural Processing Unit in 8nm Flagship Mobile SoC,” in 2019 IEEE
International Solid- State Circuits Conference - (ISSCC), 2019, pp. 130–132. doi:
10.1109/ISSCC.2019.8662476.

[10] S. Ryu et al., “A 44.1TOPS/W Precision-Scalable Accelerator for Quantized Neural
Networks in 28nm CMOS,” in 2020 IEEE Custom Integrated Circuits Conference
(CICC), 2020, pp. 1–4. doi: 10.1109/CICC48029.2020.9075872.

[11] Z. Yuan et al., “14.2 A 65nm 24.7µJ/Frame 12.3mW Activation-Similarity-Aware
Convolutional Neural Network Video Processor Using Hybrid Precision, Inter-
Frame Data Reuse and Mixed-Bit-Width Difference-Frame Data Codec,” in 2020

IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 232–234.
doi: 10.1109/ISSCC19947.2020.9063155.

[12] Z. Li et al., “An 879GOPS 243mW 80fps VGA Fully Visual CNN-SLAM Processor for
Wide-Range Autonomous Exploration,” in 2019 IEEE International Solid- State
Circuits Conference - (ISSCC), 2019, pp. 134–136. doi:
10.1109/ISSCC.2019.8662397.

[13] Y.-C. Lo et al., “Physically Tightly Coupled, Logically Loosely Coupled, Near-
Memory BNN Accelerator (PTLL-BNN),” in ESSCIRC 2019 - IEEE 45th European
Solid State Circuits Conference (ESSCIRC), 2019, pp. 241–244. doi:
10.1109/ESSCIRC.2019.8902909.

[14] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU: An Energy-
Efficient Deep Neural Network Accelerator With Fully Variable Weight Bit
Precision,” IEEE J Solid-State Circuits, vol. 54, no. 1, pp. 173–185, 2019, doi:
10.1109/JSSC.2018.2865489.

[15] B. Moons, D. Bankman, L. Yang, B. Murmann, and M. Verhelst, “BinarEye: An
always-on energy-accuracy-scalable binary CNN processor with all memory on
chip in 28nm CMOS,” in 2018 IEEE Custom Integrated Circuits Conference (CICC),
2018, pp. 1–4. doi: 10.1109/CICC.2018.8357071.

[16] I. A. Papistas et al., “A 22 nm, 1540 TOP/s/W, 12.1 TOP/s/mm2 in-Memory Analog
Matrix-Vector-Multiplier for DNN Acceleration,” in 2021 IEEE Custom Integrated
Circuits Conference (CICC), 2021, pp. 1–2. doi: 10.1109/CICC51472.2021.9431575.

[17] H. Jia et al., “15.1 A Programmable Neural-Network Inference Accelerator Based
on Scalable In-Memory Computing,” in 2021 IEEE International Solid- State
Circuits Conference (ISSCC), 2021, pp. 236–238. doi:
10.1109/ISSCC42613.2021.9365788.

[18] P.-C. Wu et al., “A 28nm 1Mb Time-Domain Computing-in-Memory 6T-SRAM
Macro with a 6.6ns Latency, 1241GOPS and 37.01TOPS/W for 8b-MAC Operations
for Edge-AI Devices,” in 2022 IEEE International Solid- State Circuits Conference
(ISSCC), 2022, pp. 1–3. doi: 10.1109/ISSCC42614.2022.9731681.

[19] J. Yue et al., “15.2 A 2.75-to-75.9TOPS/W Computing-in-Memory NN Processor
Supporting Set-Associate Block-Wise Zero Skipping and Ping-Pong CIM with
Simultaneous Computation and Weight Updating,” in 2021 IEEE International
Solid- State Circuits Conference (ISSCC), 2021, pp. 238–240. doi:
10.1109/ISSCC42613.2021.9365958.

[20] J. Yue et al., “14.3 A 65nm Computing-in-Memory-Based CNN Processor with 2.9-
to-35.8TOPS/W System Energy Efficiency Using Dynamic-Sparsity
Performance-Scaling Architecture and Energy-Efficient Inter/Intra-Macro Data
Reuse,” in 2020 IEEE International Solid- State Circuits Conference - (ISSCC),
2020, pp. 234–236. doi: 10.1109/ISSCC19947.2020.9062958.

[21] Q. Liu et al., “33.2 A Fully Integrated Analog ReRAM Based 78.4TOPS/W Compute-
In-Memory Chip with Fully Parallel MAC Computing,” in 2020 IEEE International
Solid- State Circuits Conference - (ISSCC), 2020, pp. 500–502. doi:
10.1109/ISSCC19947.2020.9062953.

[22] Z. Chen, X. Chen, and J. Gu, “15.3 A 65nm 3T Dynamic Analog RAM-Based
Computing-in-Memory Macro and CNN Accelerator with Retention
Enhancement, Adaptive Analog Sparsity and 44TOPS/W System Energy
Efficiency,” in 2021 IEEE International Solid- State Circuits Conference (ISSCC),
2021, pp. 240–242. doi: 10.1109/ISSCC42613.2021.9366045.

[23] E. Flamand et al., “GAP-8: A RISC-V SoC for AI at the Edge of the IoT,” in 29th IEEE
International Conference on Application-specific Systems, Architectures and
Processors, ASAP 2018, Milano, Italy, July 10-12, 2018, IEEE Computer Society,
2018, pp. 1–4. doi: 10.1109/ASAP.2018.8445101.

[24] GreenWaves, “GAPuino.”
[25] Syntiant, “NDP120.”
[26] D. Rossi et al., “Vega: A Ten-Core SoC for IoT Endnodes with DNN Acceleration

and Cognitive Wake-Up from MRAM-Based State-Retentive Sleep Mode,” IEEE J
Solid-State Circuits, vol. 57, no. 1, pp. 127–139, Jan. 2022, doi:
10.1109/JSSC.2021.3114881.

[27] I. Miro-Panades et al., “SamurAI: A 1.7MOPS-36GOPS Adaptive Versatile IoT Node
with 15,000× Peak-to-Idle Power Reduction, 207ns Wake-Up Time and
1.3TOPS/W ML Efficiency,” in 2020 IEEE Symposium on VLSI Circuits, 2020, pp. 1–
2. doi: 10.1109/VLSICircuits18222.2020.9163000.

[28] M. Molendijk, F. de Putter, M. Gomony, P. Jääskeläinen, and H. Corporaal,
“BrainTTA: A 35 fJ/op Compiler Programmable Mixed-Precision Transport-
Triggered NN SoC,” Nov. 2022, [Online]. Available:
http://arxiv.org/abs/2211.11331

[29] M. Scherer, A. Di Mauro, G. Rutishauser, T. Fischer, and L. Benini, “A 1036
TOp/s/W, 12.2 mW, 2.72 μJ/Inference All Digital TNN Accelerator in 22 nm FDX
Technology for TinyML Applications,” in 25th IEEE Symposium on Low-Power and
High-Speed Chips and Systems, COOL Chips 2022 - Proceedings, Institute of
Electrical and Electronics Engineers Inc., 2022. doi:
10.1109/COOLCHIPS54332.2022.9772668.

[30] V. Jain, S. Giraldo, J. De Roose, L. Mei, B. Boons, and M. Verhelst, “TinyVers: A
Tiny Versatile System-on-Chip With State-Retentive eMRAM for ML Inference at
the Extreme Edge,” IEEE J Solid-State Circuits, pp. 1–12, Jan. 2023, doi:
10.1109/jssc.2023.3236566.

[31] P. Houshmand et al., “DIANA: An End-to-End Hybrid DIgital and ANAlog Neural
Network SoC for the Edge,” IEEE J Solid-State Circuits, vol. 58, no. 1, pp. 203–215,
Jan. 2023, doi: 10.1109/JSSC.2022.3214064.

[32] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware accelerators,”
Commun ACM, vol. 63, no. 7, pp. 48–57, Jun. 2020, doi: 10.1145/3361682.

[33] F. Conti et al., “22.1 A 12.4TOPS/W @ 136GOPS AI-IoT System-on-Chip with 16
RISC-V, 2-to-8b Precision-Scalable DNN Acceleration and 30%-Boost Adaptive
Body Biasing,” in 2023 IEEE International Solid- State Circuits Conference (ISSCC),
IEEE, Feb. 2023, pp. 21–23. doi: 10.1109/ISSCC42615.2023.10067643.

[34] Y. Tortorella, L. Bertaccini, D. Rossi, L. Benini, and F. Conti, “RedMulE: A
Compact FP16 Matrix-Multiplication Accelerator for Adaptive Deep Learning on
RISC-V-Based Ultra-Low-Power SoCs,” in Proceedings of the 2022 Conference &
Exhibition on Design, Automation & Test in Europe, in DATE ’22. Leuven, BEL:
European Design and Automation Association, 2022, pp. 1099–1102.

[35] L. Mei, P. Houshmand, V. Jain, S. Giraldo, and M. Verhelst, “ZigZag: Enlarging
Joint Architecture-Mapping Design Space Exploration for DNN Accelerators,”
IEEE Transactions on Computers, vol. 70, no. 8, pp. 1160–1174, 2021, doi:
10.1109/TC.2021.3059962.

[36] A. Symons, L. Mei, S. Colleman, P. Houshmand, S. Karl, and M. Verhelst, “Towards
Heterogeneous Multi-core Accelerators Exploiting Fine-grained Scheduling of

Layer-Fused Deep Neural Networks,” Dec. 2022, [Online]. Available:
http://arxiv.org/abs/2212.10612

[37] H. E. Sumbul et al., “System-Level Design and Integration of a Prototype AR/VR
Hardware Featuring a Custom Low-Power DNN Accelerator Chip in 7nm
Technology for Codec Avatars,” in Proceedings of the Custom Integrated Circuits
Conference, Institute of Electrical and Electronics Engineers Inc., 2022. doi:
10.1109/CICC53496.2022.9772810.

[38] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor processing
unit,” in Proceedings - International Symposium on Computer Architecture,
Institute of Electrical and Electronics Engineers Inc., Jun. 2017, pp. 1–12. doi:
10.1145/3079856.3080246.

[39] K. Seshadri, B. Akin, J. Laudon, R. Narayanaswami, and A. Yazdanbakhsh, “An
Evaluation of Edge TPU Accelerators for Convolutional Neural Networks,” in
Proceedings - 2022 IEEE International Symposium on Workload Characterization,
IISWC 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 79–
91. doi: 10.1109/IISWC55918.2022.00017.

[40] H. Liao et al., “Ascend: A Scalable and Unified Architecture for Ubiquitous Deep
Neural Network Computing : stry Track Paper,” in Proceedings - International
Symposium on High-Performance Computer Architecture, IEEE Computer
Society, Feb. 2021, pp. 789–801. doi: 10.1109/HPCA51647.2021.00071.

[41] E. Talpes et al., “Compute solution for tesla’s full self-driving computer,” IEEE
Micro, vol. 40, no. 2, pp. 25–35, Mar. 2020, doi: 10.1109/MM.2020.2975764.

	Deliverable Summary
	1. Objectives
	WP6 Objectives
	1.1.1. Deliverable D6.3 Objectives

	WP6 Contribution to CONVOLVE’s Objective

	2. SoC Architecture Overview
	3. Rapid Design and Prototyping Environment
	3.1. System Design Flow
	3.2. Host Domain Design Challenges
	3.3. Cheshire SoC Host
	3.4. Core Complex
	3.5. Interconnect
	3.6. IO Peripherals
	3.7. Memory Hierarchy and Access
	3.8. Interrupt Routing
	3.9. Bender
	3.10. Bender Example
	3.11. Results and Future Work
	4. Cluster Instantiation
	4.1. Accelerator IP Integration Challenges
	4.2. Solder
	4.2.1. Solder Rapid Prototyping Flow
	4.2.2. CDC and Protocol Adapter Instantiation
	4.3. Results and Future Work
	4.4. Accelerator Template and Integration
	4.5. SNAX Platform
	3.10 SNAX Chisel
	4.6 SNAX Development
	4.6. SNAX Cluster

	5. Conclusion
	6. References

