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Deliverable Summary 

 
This document provides the description of SoC architecture and rapid design & prototyping 
environment, providing an overview of the System-on-Chip (SoC) architecture, emphasizing 
the rapid design and prototyping environment. It outlines the system design flow, highlighting 
the crucial steps involved in the flow. The document also delves into the host and peripherals, 
discussing their integration and functionality within the SoC. Furthermore, it explores cluster 
instantiation, shedding light on the process of creating and configuring clusters within the 
architecture. Additionally, the document examines the accelerator template and integration, 
showcasing the integration of specialized accelerators into the SoC design. Overall, this 
comprehensive report offers valuable insights into the various components and design 
aspects of the SoC architecture, providing a solid foundation for further exploration and 
development. 

1. Objectives 

This document “D6.3 Description SoC architecture, and the rapid design & prototyping 
environment” is a deliverable of the Work package No.6 “Compositional architecture DSE and 
SoC generation”. 

WP6 Objectives 

WP6 deals with automated compositional system architecture design space exploration (DSE) 
and system-on-chip (SoC) generation. This is done by providing a modular architecture 
template consisting of a RISC-V host with one or multiple machine learning (ML) and security 
accelerators. 

The objectives of WP6 are defined as follows: 

1) Provide a secure and modular RISC-V based SoC architecture template that eases the 
integration of multiple accelerators, managing control, synchronization, data 
exchange and run-time reconfiguration. 

2) Create a SoC-level performance modelling framework for running ML applications on 
the targeted modular runtime configurable architectures, integrating the component 
models coming out of WP2. 

3) Develop a rapid Design Space Exploration (DSE) framework to cycle quickly over ULP 
SoC and accelerator constellations, finding the optimal balance between design-time 
and run-time flexibility. 

4) Realize an automated design time instantiation flow for optimal and run-time flexible 
SoC generation. 

1.1.1. Deliverable D6.3 Objectives 

The deliverable D6.3 of WP6 describes the definition of SoC and rapid design & prototyping 
environment within the context of CONVOLVE WP6. The objective of this deliverable is to 
provide a comprehensive overview of the System-on-Chip (SoC) architecture, with a specific 



  
 

 

focus on the rapid design and prototyping environment. It aims to outline the system design 
flow, elucidating the key steps involved in the design process. Additionally, the report aims to 
explore the integration and functionality of the host and peripherals within the SoC. It also 
seeks to examine the process of cluster instantiation, emphasizing the creation and 
configuration of clusters within the architecture. Furthermore, the report aims to showcase 
the integration of specialized accelerators through the accelerator template. By achieving 
these objectives, this report serves as a valuable resource for understanding the various 
components and design aspects of the SoC architecture, facilitating baseline for further 
exploration and development in this field. 

WP6 Contribution to CONVOLVE’s Objective 

WP6 focuses on the modular SoC design and rapid deployment which makes the work package 
one of the contributors to achieve CONVOLVE’s target to reduce design time of edge AI 
hardware systems by 10x by focusing on the faster design time of the SoC architecture and 
providing a design space exploration tool for rapid software-hardware co-design explorations. 
At the same time, WP6 is crucial to bring together all developed accelerators which are needed 
to achieve CONVOLVE’s goal to achieve 100x energy efficiency improvement by providing an 
SoC template with standard interfaces to a set of ultra-low-power ML and security 
acceleration blocks which exploit novel architectures, microarchitectures, circuits and 
devices. 

To achieve these goals, it is necessary to have customizable hardware acceleration blocks that 
can be parameterized during both design and run time using a standard interface. These 
blocks should allow for various configurations based on diverse application needs, including 
adjustments in supply voltage, clock frequency, data representation accuracy levels, 
parallelization degrees and dimensionality precision values. WP6 focuses on providing a 
modular and scalable SoC with such standardized interfaces such that the design acceleration 
blocks can be plugged easily to reduce the overall design time. 

In addition to the RTL design itself, performance models and simulators must also be 
modifiable to enable fast exploration of the design-space without sacrificing compositional 
flexibility. WP6 focuses also on automated design-space exploration (DSE) and simulators 
using performance models of the hardware building blocks. 

  



  
 

 

2. SoC Architecture Overview 

Figure 1 provides an overview of the SoC template used in Convolve, which consists of two 
main domains: the support infrastructure domain and the L2-accelerators domain. The 
support infrastructure domain includes a RISC-V host, main memory, and peripherals. These 
components are connected through a high-speed on-chip interconnect, such as a network-
on-chip (NoC) or AMBA AXI. This domain serves as the foundation of the SoC template. The 
L2-accelerators domain comprises a set of L2 Snitch Cluster Accelerator Extension (SNAX) 
clusters, which can contain the same type or a combination of different accelerators, but 
same standard interface. One example to SNAX cluster is shown on the right side of Figure 1. 
Within this cluster, general-purpose RISC-V cores can control the accelerators and share 
tightly coupled data memory (TCDM) with accelerators. 

 
FIGURE 1: OVERVIEW OF HIGH-LEVEL SOC TEMPLATE (SN: SNITCH, DMA: DIRECT MEMORY ACCESS, TCDM: TIGHTLY COUPLED DATA 

MEMORY) 
 
The following features are included in the SNAX cluster, ordered based on numbers on the 
Figure 1. (1) A lightweight accelerator manager core implemented using a Snitch processor. (2) 
Custom accelerators capable of running specific kernels based on user requirements. (3) A 
tightly coupled data memory (TCDM) interconnect that connects the accelerator and Snitch 
cores to the memory. (4) A shared multi-bank memory accessible to all accelerators and 
cores. (5) A DMA core responsible for data movement between the wide and narrow AXI 
interconnects (7) and (8), transferring data to and from an L2 memory outside the cluster 
towards the local TCDM. (6) Shared instruction memory utilized by all Snitch cores. (7) A wide 
interconnect with a bandwidth of 512 bits, facilitating data transfer from L2 to TCDM. (8) A 
narrow interconnect enabling communication of shell data between TCDMs. The details of 
each part of the SNAX can be found in Deliverable D2.2 “Report on the Micro-architecture 
Design and Implementation”. 
 
The current state of the SNAX platform allows users to explore basic architectural 
possibilities. With a complete HW-SW setup, users can also profile their system and obtain 



  
 

 

initial performance estimates. The integration of a new accelerator into the SNAX platform 
has been simplified for user convenience. 

3. Rapid Design and Prototyping Environment 

This Section introduces the newly developed rapid design and prototyping flow for the 
CONVOLVE project. Specifically, we first describe Cheshire, the SoC template used in 
CONVOLVE, and Bender and Solder, two software tools for managing IP dependencies and 
exploring AMBA AXI interconnect configurations. 

3.1. System Design Flow 

Architectural development, together with verification and physical implementation are often 
considered the main efforts of new system design. Such efforts often rely on an effective and 
structured management and integration of the components into the final design. Many 
challenges of designing a new SoC originate from the inherent fluidity of its initial 
specifications. System requirements may be incomplete, subject to change over the course 
of a project or conditioned to events unrelated to the project, necessitating a design 
approach that can accommodate ongoing modifications in functionalities and features. Such 
modifications can have a cascading effect, impacting other aspects of the design. For 
instance, replacing the CPU of the SoC host domain often necessitates adjustments to 
various parts of the SoC, triggering a re-evaluation of some of the components that have been 
already integrated. The process of new system design is inherently iterative.  

The following sections introduce the complexities associated with rapid SoC prototyping. 
Each section focuses on the unique challenges encountered within specific SoC domains. 
Furthermore, these sections showcase the innovative solutions developed within the 
CONVOLVE project to overcome these challenges. 

3.2. Host Domain Design Challenges 

 

Developing SoCs (System-on-Chip) with design-time reconfigurability offers significant 
advantages, but it also presents unique challenges: 

• Design Partitioning: Effectively partitioning the architecture of an SoC into well-
defined features is crucial for iterative development and meeting evolving design 
requirements. An appropriate partitioning ensures ease of modification and enables 
independent optimization of individual features. 

• Standardized IP Interfaces: Standardization of interfaces between different 
intellectual property (IP) blocks minimizes the effort required for integration. 
Consistent interfaces allow for minimally invasive architectural modifications and 
reconfiguration of IPs within the SoC. 

• Automated IP Management: A robust framework for automated IP fetching and 
version control is essential. An effective IP management strategy streamlines the 
integration of IP dependencies and ensures compatibility throughout the design 
process. 

• Automated Script Generation: Often, the design flow utilizes several Electronic 
Design Automation (EDA) tools from various vendors. A human friendly strategy for 



  
 

 

generating scripts across these tools is necessary to automate design flow steps and 
track design files used in different phases of the project. 

These challenges necessitate a multi-disciplinary approach that merges expertise in 
hardware design, software development, and system integration. Achieving an effective 
design partitioning requires deep understanding of hardware architecture and 
communication infrastructure design to ultimately ensure a good quality of result, i.e., flexible 
data flow across various configurations and, at the same time, efficient utilization of silicon 
area and low computational energy.  Such expertise must be combined with In-depth 
understanding of software development principles, driver design for adaptable hardware for 
managing diverse configurations and guarantee usability of the system. Ultimately, a holistic 
view of system integration, encompassing hardware and software interactions is required for 
ensuring testability across different configurations, and usability of the SoC in the relevant 
application scenario. 

Besides expertise, achieving design-time reconfigurability of an SoC requires the possibility 
to effectively modify the IPs that are integrated in the design. This might involve modifying IP 
parameters to enable specific configuration options, but it could be as invasive as entirely 
generating the IP source files from a configurable template.  

In some cases, and very often when designing subsystems integrating CPUs, design-time 
reconfiguration might necessitate modifying both hardware and software components 
concurrently. The software stack needs to be adaptable to different hardware configurations. 
In this context, the design framework might need to provide tools or methodologies for 
generating configuration-specific software components or drivers. This must be combined 
with hardware and software co-simulation tools and methodologies that enable joint 
hardware-software exploration and optimization. 

Ultimately, maintaining consistency between IP components becomes crucial. The 
framework needs robust version control mechanisms to ensure compatibility among IPs and 
avoid integration issues during the design process. 

The next Section introduces the Cheshire SoC template, a foundational element within the 
design flow developed in the CONVOLVE project. Cheshire plays a critical role in addressing 
the challenges associated with design partitioning and efficient component interconnection. 
It achieves this through the utilization of standardized communication interfaces. 

Building upon the foundation laid by Cheshire, we present Bender, a dedicated software tool 
designed to manage IP dependencies. Bender automates script generation for a majority of 
the EDA tools commonly employed in SoC development. This automation capability 
significantly reduces the overhead associated with IP dependency management. 

3.3. Cheshire SoC Host 

 
The design space exploration (DSE) developed in the CONVOLVE project is built around a 
modular SoC host system. This host acts as the central control unit, orchestrating critical 
functionalities that ensure the efficient operation of the System-on-Chip (SoC). The host 
developed in the context of this project is derived from the openly available 



  
 

 

(https://github.com/pulp-platform/cheshire). The block diagram describing the default 
architecture of Cheshire is reported in Figure 2.  

 
FIGURE 2: CHESHIRE SOC BLOCK DIAGRAM 

 
By default, Cheshire uses a 64 Bit AXI crossbar that connects the Linux capable CVA61 core 
with the rest of the system, including various I/O peripherals like SPI, GPIO, I2C, UART, and 
JTAG. Cheshire features a SoC-level DMA which is responsible for efficient data movement 
between the various IP blocks. However, Cheshire is ultimately a flexible aggregator of IPs 
that provide an easy way to plug hardware accelerators, as the way it is partitioned allows for 
changing any component inside. The next sections provide an overview of how the various 
modules inside Cheshire can be adapted to different SoC requirements. 
 

3.4. Core Complex 

The Cheshire SoC template is built around a core complex hosting, by default, the CVA6 
processor. These cores come pre-configured with hypervisor and Core Local Interrupt 
Controller (CLIC) support for advanced virtualization and interrupt handling capabilities.  

Users can define the number of CVA6 cores instantiated within the SoC, ranging from a single 
core to a maximum of 31. Additionally, parameters like the depth of the CVA6 return address 
stack and the size of internal structures like the Branch Target Buffer (BTB) and Branch 
History Table (BHT) can be adjusted to fine-tune core behavior. 

For communication with external memory, Cheshire utilizes the AXI4 bus protocol. Each CVA6 
core acts as an independent AXI4 master, capable of initiating data transfers. To maintain 
data consistency across multiple cores, Cheshire employs a self-invalidation scheme. This 

 
1 https://github.com/openhwgroup/cva6 

https://github.com/pulp-platform/cheshire
https://github.com/openhwgroup/cva6


  
 

 

means cores automatically invalidate their cached copies of data whenever they modify that 
data, ensuring all cores have the latest version. 

A unique aspect of Cheshire lies in its handling of RISC-V atomic instructions. These special 
instructions allow for synchronized memory access operations essential for multi-core 
programming. Cheshire implements a custom AXI4 extension that relies on user channels to 
facilitate these atomic operations. Each core and other AXI4 masters are assigned a 
dedicated user channel and a unique identifier within a designated user channel bit slice. This 
mechanism ensures efficient and coordinated execution of atomic instructions across 
multiple cores. 

In the context of the CONVOLVE project, we plan to replace the RV64A CVA6 core with a low-
power 32-bit RV32IMC configuration to maximize energy efficiency for a microcontroller class 
system as designed in CONVOLVE. The IMC configuration supports standard integer 
operations as well as multiplications, and improves cache performance and energy efficiency 
through the use of compressed instructions. 

3.5. Interconnect 

The Cheshire SoC template employs a hierarchical interconnect strategy to achieve a balance 
between performance and cost. Agents requiring high data transfer bandwidth are connected 
to the High-Performance AXI4 Crossbar. This component implements the AXI4 protocol. It 
supports Atomic Operations (ATOPs) for synchronized memory access crucial in multi-core 
systems. The AXI4 crossbar exposes various configurable parameters, allowing for fine-
tuning aspects like data width, maximum in-flight transactions, and user channel allocation 
for RISC-V atomic operations. Additionally, Cheshire offers optional features for the AXI4 
interconnect: 

• AXI-RT: This adds traffic regulation units for individual AXI4 masters, enabling 
bandwidth and traffic control for real-time applications. 

• BusErr: This integrates an error reporting mechanism for the AXI4 masters, reporting 
errors through a dedicated Regbus interface. 

Agents requiring low data transfer bandwidth are connected to the AXI4 crossbar through a 
cost-effective Regbus demultiplexer. This component utilizes the Regbus protocol. While 
less performant than AXI4 due to limitations in burst transfers and pipelining, Regbus offers 
a simpler and significantly cheaper implementation. It provides access to various peripherals 
and configuration interfaces within the SoC. The Regbus protocol operates with a fixed 32-
bit data width. This combined approach allows Cheshire to leverage the high-performance 
AXI4 for critical data paths while utilizing the cost-effective Regbus for peripheral 
interactions. This hierarchical structure significantly improves interconnect scalability, 
enabling efficient communication within the SoC while keeping the SoC interconnection 
complexity low. 

Both the AXI4 crossbar and the Regbus are parametrized components. The parameters allow 
for customization of the AXI4 and Regbus components, tailoring their behavior to specific 
design requirements. Additionally, the configurable number of external ports on both AXI4 
and Regbus facilitates integration with external memory systems employed by surrounding 
SoCs. 



  
 

 

3.6. IO Peripherals 

The Cheshire SoC template offers a rich set of peripherals for designers to integrate into their 
custom SoCs. Here's a breakdown of some key components: 

• VGA Controller: This peripheral allows for displaying video frames stored in memory 
on a VGA interface. It operates autonomously, fetching data through an AXI4 manager 
port. 

• OpenTitan Peripherals: The I2C host, SPI host, and GPIO interface leverage OpenTitan 
IP blocks [A reference needed here], adapted for use within the PULP platform. These 
peripherals maintain compatibility with OpenTitan's device interface functions (DIFs) 
with minor modifications.  

• UART: This serial communication interface is compatible with the industry-standard 
TI 16750, ensuring seamless integration with popular operating systems like OpenSBI, 
U-Boot, and Linux. Notably, Cheshire exposes the modem access control functionality 
for systems requiring such features. 

The Cheshire SoC template integrates a RISC-V compliant debug module to aid in 
development and troubleshooting. This module supports the JTAG protocol for external 
debugging and offers functionalities for both internal and external processor cores (harts). 
Additionally, it provides access to the system bus for memory inspection and manipulation. 

3.7. Memory Hierarchy and Access 

 

The Cheshire SoC template relies on external memory for its main storage. However, several 
internal components play crucial roles in memory management and the boot process: 

• Last Level Cache (LLC): This on-chip cache acts as a buffer between the SoC and 
external memory (typically DRAM). It caches all memory accesses unless explicitly 
bypassed. Notably, the LLC can be configured to function as scratchpad memory 
(SPM) during the initial boot stage. This allows the boot ROM to utilize the LLC as 
temporary working memory for loading code from external storage. The LLC can be 
entirely omitted if a more complex external memory system is used. However, an 
external scratchpad memory would still be necessary for booting bare-metal code 
from local memory. 

• Boot ROM: This embedded ROM contains the initial code executed by the SoC after 
reset. Its primary function is to safely and efficiently load a main program from an 
external source into memory.  

• iDMA Engine: This hardware component implements high-speed data transfers 
between any two memory locations within the system. This component supports two-
dimensional data transfers efficiently. 

To reduce the memory access energy and shrink the overall power envelope of the SoC 
domain, we plan to replace the LLC with a dedicated L2 scratchpad memory.  



  
 

 

3.8. Interrupt Routing 

The Cheshire SoC employs a flexible RISC-V interrupt architecture to efficiently manage 
interrupts from both internal components and external devices. This system allows for 
routing and directing these interrupts to various controllers and targets within the SoC. 

The internal interrupt map is statically defined, simplifying interrupt handling for internal 
components. Conversely, the handling of external interrupts can be customized based on the 
surrounding system configuration. This allows the Cheshire SoC to adapt to various setups 
involving different external devices and peripherals. 

The Interrupt Routing Process works as follows: All interrupt sources, internal and external, 
are first collected into a single pool. If the interrupt router is enabled, it takes over, routing 
and multiplexing the interrupts efficiently. When the router is disabled, the interrupts are 
directly distributed (fanned out) to the interrupt targets. It's important to note that targets 
may have limitations on the number of interrupts they can handle. Any exceeding interrupts 
are simply ignored in such scenarios. 

The Cheshire SoC offers a range of interrupt targets, including: 

• Core-Local Interrupter (CLINT): This internal component groups all interrupt requests 
from a single core, primarily handling inter-processor and timer interrupts. 

• Shared Platform-Level Interrupt Controller (PLIC): This controller acts as a central hub 
for interrupt handling within the entire platform. 

• Optional Core-Local Interrupt Controller (CLIC): Each CVA6 core can optionally have 
its own CLIC, providing another target for interrupts. 

• External Interrupt Targets: The system can be configured with a user-defined number 
of external targets, each with its own capabilities for handling interrupts. 

The PLIC and grouped CLINT can be configured to manage interrupts for external processor 
cores (harts) that lack their own internal interrupt controllers. This allows the Cheshire SoC to 
seamlessly integrate with various system configurations. 

3.9. Bender  

Bender (https://github.com/pulp-platform/bender) is a powerful solution for managing 
dependencies within hardware design projects, specifically targeting Intellectual Property 
(IP) integration. This dependency management tool enables a streamlined workflow by 
describing the definition of dependencies between IPs and the source file compatibility with 
various simulation and synthesis tools. 

Bender prioritizes user autonomy. It eschews restrictions on specific Electronic Design 
Automation (EDA) tools, workflows, or IP directory structures. Additionally, being compiled as 
a single executable, it can be easily integrated into established development pipelines, e.g., 
based on Makefiles. 

Reproducibility is another goal of Bender. Once dependencies are fetched It tracks the git 
hash for each dependency within a lock file. This record allows for the reconstruction of a 
project's source code even after a significant timeframe has elapsed, guaranteeing a reliable 
historical record, crucial when multiple parts of the design change concurrently. 

https://github.com/pulp-platform/bender


  
 

 

Bender operates in a three-tiered approach: 

• Source File Collection: Bender efficiently gathers source files from hardware IPs, 
maintaining the correct order (e.g., ensuring package declarations precede usage) 
and supporting multiple hardware description languages like SystemVerilog and 
VHDL. It facilitates the organization of files into logical groups and manages, defines 
and includes directories for each group. 

• Dependency Management: Bender tracks dependencies between IPs and 
streamlines the process of local checkouts for the necessary source files. It supports 
transitive dependencies (dependencies of dependencies) and enforces strict 
adherence to semantic versioning for clear communication of compatibility changes. 
Notably, Bender deviates from traditional package managers by not relying on a 
central registry. This caters to the often confidential nature of IPs within a project. 

• Tool Script Generation: Bender further optimizes the development workflow by 
generating scripts for various tools. These scripts can be source file listings or 
compilation scripts tailored to specific tools. 

The package manifest describes the package, its metadata, its dependencies, and its source 
files. All paths in the manifest may be relative, in which case they are understood to be relative 
to the directory that contains the manifest. 

3.10. Bender Example 

 
We show an example for the bender configuration of Cheshire, the basis of the SoC used in 
the CONVOLVE project. All fundamental IP blocks, including the CVA6 cores, iDMA, debug unit 
and CLINT are declared as dependencies. Next, by running bender checkout, the 
corresponding dependencies are downloaded from their open-source repositories. Examples 
of the Bender.yml file are shown in Figures 3 and 4. 



  
 

 

FIGURE 3: BENDER.YML DEPENDENCY MANAGEMENT FILE SHOWING THE INTEGRATION OF VARIOUS HARDWARE IPS FROM GITHUB. 

FIGURE 4: BENDER.YML DEPENDENCY MANAGEMENT FILE SHOWING THE FILES AND THEIR COMPILATION ORDER FOR THE CHESHIRE 

PROJECT. 

Using these checked out dependencies, simulation and elaboration scripts can be auto-
generated by generating for one the numerous supported targets like vsim, vcs & verilator for 
simulation and synopsys, genus, and vivado for synthesis targets, where the command is 
structured `bender script TARGET`. Figures 5 and 6 show automatically generated simulation 
elaboration and synthesis elaboration scripts for Questasim and Synopsys respectively. 
 



  
 

 

 
FIGURE 5: QUESTASIM ELABORATION SCRIPT AUTOMATICALLY GENERATED BY BENDER. 

 

 
FIGURE 6: SYNOPSYS ELABORATION SCRIPT AUTOMATICALLY GENERATED BY BENDER. 

 
Using Bender to generate elaboration scripts automatically not only avoids tedious manual 
scripting of boilerplate code, but also avoids errors in elaboration order and dependency 
management, which can cause hard to trace bugs. 

3.11. Results and Future Work 

 
We have specified the final SoC template to be used in the CONVOLVE project based on the 
Cheshire SoC. We have also integrated Cheshire with Bender, which allows us to easily add 
new accelerator IPs, generate elaboration and simulation scripts automatically, and manage 
versions of shared dependencies between all IPs. 
 
In future work, we will update the Cheshire SoC with a 32-bit CVA6 core and replace the LLC 
with an L2 scratchpad memory. 
 

4. Cluster Instantiation  

Integrating multiple accelerator cluster Intellectual Properties (IPs) into System-on-Chips 
(SoCs) presents numerous challenges. This Section gives an overview of the challenges we 
address in the CONVOLVE project through automated tooling for IP integration on the cluster 
level. 



  
 

 

The CONVOLVE project’s SoC template offers three integration possibilities, L0, L1, and L2 
accelerators, as explained in Deliverable D6.1. The protocol used for L2 accelerators, 
Advanced eXtensible Interface (AXI), is well-suited to integrate multiple concurrent Snitch 
and SNAX clusters, as it supports high data rates through features like burst transfers and 
split transactions. In AXI, data transfers are decoupled through split transactions into 
address/control and data phases, simultaneously allowing multiple outstanding transactions. 
This significantly improves the utilization of the SoC’s main bus, as the interface can handle 
new requests even before the current transaction is completed. 
 
In the following, we describe the challenges of integrating clusters within SoCs and introduce 
the Solder tool, which helps addressing the challenges. 

4.1. Accelerator IP Integration Challenges 

While most IPs in the SoC operate in a single synchronous clock domain, the accelerators are 
intended to provide high throughput, meaning the SoC must accommodate the accelerator’s 
frequency requirements. As such, the accelerators in the CONVOLVE project must be able to 
operate at frequencies different from those of the main SoC.  
 
To communicate with the SoC, compute clusters must cross clock domains. Clock domain 
crossings (CDCs) are an important challenge, as improper synchronization may lead to 
metastability, a condition that occurs when a flip-flop receives a change of its input signal 
close to the transition edge of its clock signal, violating the setup condition. In these 
conditions, the flip-flop may enter an undefined state for an unpredictable duration, 
potentially leading to data corruption and system instability. 
 
Addressing metastability is challenging, as metastability is a condition that arises non-
deterministically, making it hard to capture in traditional digital verification flows. An example 
of a metastable condition is shown in the Figure 7. 

 

FIGURE 7: EXAMPLE OF A METSTABLE OPERATING CONDITION. 

Besides the challenge of correctly identifying and constraining CDCs, every cluster has to be 
assigned a unique, non-overlapping address range. This address range is used to map all 
globally addressable registers and memories of the cluster, making them accessible from the 
SoC or other clusters. This address range must be propagated to every endpoint of the AXI 
interconnect; this process is error-prone, especially when integrating multiple cluster IPs 
using differently sized L1 memories or when exploring different cluster configurations. 



  
 

 

Correctly propagating address ranges through interconnects becomes more challenging 
when exploring different interconnect topologies. The choice of interconnect topologies 
ranges from fully flat crossbar configurations to deeply hierarchical routing trees, which 
allows to trade-off throughput and contention with the area and routing congestion of the 
interconnect. This is especially relevant for multi-tile SoC architectures, where many 
accelerators must communicate with the SoC’s memories and peripherals, as the area and 
energy cost of full crossbar configurations scale quadratically with the number of AXI 
masters.  

Scaling interconnects hierarchically solves this problem but requires tedious reconfiguration 
of low-level Register Transfer Level (RTL) code. Moreover, finding an optimal configuration 
trade-off for interconnects is a challenging design problem and requires design space 
exploration. 

 

In summary, the key challenges for generating scalable interconnects for multi-tile AI SoCs lie 
in three key problems: 

• Verifying correctness of address ranges for interconnect endpoints 
• Rapid reconfiguration of complex, multi-tiered hierarchical interconnects 
• Correct insertion and constraining of clock domain crossings 

 

In the next Section, we present our CONVOLVE work on Solder, an interconnect generation 
tool for AXI interconnects, which addresses the core challenges that present itself in 
heterogeneous multi-tile SoCs. 

4.2. Solder  

As discussed in the previous Section, solving the various design challenges of multi-tile SoCs 
requires a structured approach to interconnect design. To address these challenges, we 
developed Solder, a tool to generate complex interconnects automatically. 

 

Solder is a Python application that instantiates hand-optimized, open-source System Verilog 
AXI modules according to topology specifications from JSON files. Solder uses the Mako 
template system publicly available as a Python library, to instantiate various AXI modules. 

 

We break down the design time benefits of Solder into two sections; First, we show how 
Solder can be used to construct AXI interconnects and verify address maps, generating 
correct-by-construction interconnects. Next, we explain how Solder can automatically 
instantiate appropriate CDC IPs. Finally, we go over applications of Solder in Design Space 
Exploration (DSE) for AXI interconnects. 



  
 

 

4.2.1. Solder Rapid Prototyping Flow 

The core abstraction in Solder is the AddrMap graph, which models the connections between 
AXI crossbars and connections with AXI endpoint IPs.  

 

To generate an interconnect with Solder, the designer first provides an addressmap 
describing each endpoint's address range. Using this addressmap, and a JSON-based 
configuration for the individual crossbars used in the design, Solder offers a high-level 
descriptive interface that allows users to connect endpoints to the other nodes, like AXI 
crossbars. An example of the high-level API used to instantiate interconnect components and 
attach IPs is shown in Figure 8.  

 

 

 
FIGURE 8: EXAMPLE OF A SOLDER SCRIPT TO MODEL THE NARROW INTERCONNECT OF AND SOC. 

 
During the construction of this graph, address rules are generated and propagated through 
the interconnect structure; this is critical to avoid address map conflicts and ensure correct 
communication between all endpoints.  

 

While generating interconnects, Solder inserts several standard AXI IPs in appropriate 
locations automatically; for example, when connecting a wide AXI crossbar with a large 
transfer size to a narrow AXI crossbar, Solder inserts AXI width and index converters 
automatically, which take care of converting transfer sizes for correct communication, as 
shown in Figure 9. 

 



  
 

 

FIGURE 9: OVERVIEW OF THE SOLDER PROTOTYPING FLOW: USING A JSON CONFIG, SOLDER INSERTS AXI IPS INTO SYSTEM VERILOG 

SOURCE FILES. 

Using this functionality, Solder supports rapid prototyping of AXI crossbar widths without 
tedious manual adaption of RTL code, enabling DSE on the SoC level. Solder supports arbitrary 
AXI interconnect configurations, allowing to prototype and integrate hierarchical 
interconnect structures easily. Solder further supports automatic protocol conversion 
between AXI and AXI Lite and the insertion of CDC IPs to synchronize clock domain crossings. 

4.2.2. CDC and Protocol Adapter Instantiation 

A critical aspect of multi-tile heterogeneous SoCs developed in the CONVOLVE project is 
clock domain crossing synchronization of asynchronous IP blocks, like clusters. Especially for 
wide buses, synchronization IPs must be carefully designed and well-constrained to avoid 
metastability effects. 

 

Solder facilitates implementing CDCs by exposing a high-level API to specify the insertion of 
CDC IPs. An example of the configuration and the generated System Verilog to instantiate a 
CDC FIFO is shown in Figures 10 and 11.  

 

 
FIGURE 10: OVERVIEW OF SOLDER DESCRIPTIONS OF AXI PROTOCOL ADAPTERS THAT ARE AUTOMATICALLY CONFIGURED USING THE 

JSON CONFIG. 



  
 

 

 
FIGURE 11: OVERVIEW OF THE AUTOMATICALLY GENERATED PROTOCOL ADAPTERS AND CDCS USING SOLDER. 

4.3. Results and Future Work 

 

We have implemented Solder, a Python-based tool for generating AXI interconnects. We have 
tested Solder on several important topologies relevant to multi-tile SoCs. Thanks to the 
reconfigurability and high-level API, Solder reduces the design- and evaluation time for AXI 
interconnects significantly, allowing for faster iterations, and, ultimately, higher quality of 
results in interconnect design. 
 
For future work, we will integrate the Solder prototyping flow with the Cheshire SoC template 
to enable rapid prototyping on the SoC level, including the integration of Cluster IPs. 
 

4.4. Accelerator Template and Integration 

 
Integrating accelerators is challenging due to the variety of customized kernels and 
customized designs of each accelerator. Specifically, we have two main problems with 
integrating multiple accelerators: (1) There does not exist a standard interface that enables 
smooth accelerator integration at the hardware level while being trans- parent in software. We 
need this for controlling accelerators with ease. (2) Every accelerator requires custom data 
and memory layouts to support accelerator- specific data access patterns for efficiency 
reasons.  
 
To solve these challenges, we developed the SNAX platform to provide uniformity at the 
hardware and software interfaces and supporting modules to handle the customized data 



  
 

 

accesses of accelerators. It is an extension of the existing Snitch cluster, but with heavy 
modifications that can provide convenience to accommodate multiple heterogeneous 
accelerators. 
 

4.5. SNAX Platform 

 
Figure 12 shows an overview of the entire SNAX platform system. We divide it into three 
sections: (1) SNAX-Chisel contains Chisel generated modules and support for quick and 
parametrized accelerator designs, (2) SNAX-Development serves as an intermediate test 
bench for testing and verification of designs before it connects to the actual cluster, and (3) 
the SNAX cluster, which is the main compute cluster containing the memories, peripherals, 
cores, and AXI interconnects for scalability. We’ve organized the platform in these three 
sections to make the development modular. 
 

 
FIGURE 12: OVERVIEW OF SNAX PLATFORM SHOWING DIFFERENT SECTIONS OF DEVELOPMENT 

3.10 SNAX Chisel 

 
SNAX Chisel contains chisel generated modules and accelerators made for the SNAX cluster. 
Since this system upholds the idea of open-source development, Chisel is a powerful open-
source to streamline parametrized designs. Parametrized designs are seen in several 
accelerators like the general matrix-matrix (GeMM) or single input multiple data (SIMD) 
accelerators. These accelerators can be parametrizable like the bandwidths, the number of 
processing elements, and the number of I/O ports. For example, the GeMM accelerator shown 
in Figure 13, can have parametrized sizes for its processing elements. 

 
FIGURE 13: 2-D DIGITAL GEMM ACCELERATOR WITH PARAMETRIZABLE SIZES 



  
 

 

 
Another example can be based on the SIMD post-processing unit, which could have any 
kernel inside it, as shown in Figure 15. 
 

 
FIGURE 14: SIMD ACCELERATOR WITH PARAMETRIZABLE PROCESSING ELEMENTS 

 
In both cases, we use chisel to generate these designs which can be conveniently hooked up 
into our SNAX cluster later. The GeMM is available at GitHub: https://github.com/KULeuven-
MICAS/snax-gemm while the SIMD is also available at GitHub: https://github.com/KULeuven-
MICAS/snax-postprocessing-simd  
 
Efficiently loading and storing data between memory and accelerators is crucial for the 
dataflow of accelerators while accommodating diverse data access patterns. To address this, 
we developed a design-time configurable streamer generator that is further run-time 
programmable. This generator produces hardware streamers that continuously manage 
multiple data streams between memory and accelerator data path, in a programmable manner. 
This module aims to alleviate the design complexity of accelerator designers, since this 
already provides the data access decoupling the design of the accelerator data path. Figure 15 
shows this streamer accelerator. 
 

 
FIGURE 15: STREAMER MODULE TO DECOUPLE ACCELERATOR DATA PATH FROM MEMORY ACCESSES 

 
The microarchitecture of the data streamer comprises of four main components: the data 
movers (read and write), address generation unit, FIFO buffers, and the CSR manager. Data 
readers manage data loading, while data writers handle data storing to and from the shared 

https://github.com/KULeuven-MICAS/snax-gemm
https://github.com/KULeuven-MICAS/snax-gemm
https://github.com/KULeuven-MICAS/snax-postprocessing-simd
https://github.com/KULeuven-MICAS/snax-postprocessing-simd


  
 

 

memory ports. Each data mover includes an individually programmable address generation 
unit (AGU) for autonomous operation. FIFO buffers employ a prefetch mechanism to mitigate 
data contentions, ensuring continuous data fetching for accelerator ports hiding contention 
occurrences. Lastly, the CSR manager oversees the CSR commands, which allow the CPU to 
program for each streamer port the base memory R/W address, as well as the memory stride. 
It also has a double-buffered CSR for pre-loading CSR configurations while an ongoing task is 
running. The interface towards the accelerator is a simple data channel with a decoupled 
interface (valid-ready protocol). 
 
The streamer developed was aimed for users to focus more on the data path of the 
accelerator. Hence, we highly recommend using our parametrizable streamers when 
integrating accelerators to our system. The streamer module is available at our GitHub page: 
https://github.com/KULeuven-MICAS/snax-streamer  
 
It should be noted that in the same level of the SNAX Chisel, some other accelerator designers 
may have their own custom accelerator design in RTL or some other method. This is just to 
visualize that at this level, we focus more on the stand-alone accelerator design. We’ve 
considered the possibilities that some designers may have their own accelerator 
implementation strategy. 
 

4.6 SNAX Development 

 
The second section is the SNAX Development which is meant for intermediate verification 
before plugging into the actual SNAX cluster.  Specifically, users need to (1) make a wrapper 
that complies with the interface of the SNAX cluster, and (2) work on some rigorous verification 
that’s easier to monitor. It emulates the SNAX cluster shell but without all the additional 
peripherals and control (e.g., CPU core, AXI interconnects, shared peripherals … etc.). It only 
contains a tightly coupled data memory (TCDM) interconnect, a memory-subsystem, and a 
Cocotb driver.  Figure 16 shows the simplified SNAX development system: 
 

 
FIGURE 16: SNAX DEVELOPMENT DIAGRAM 

 
The memory is reconfigurable like how it is from the SNAX cluster (see next subsection). We 
can configure the number of banks, the number of data widths, and the total memory size. The 
interconnect is a complex interconnect hooked to the accelerator to handle memory requests 
and data contentions. The accelerator is any custom accelerator a user may integrate, and the 
Cocotb driver is a Python package1 used for driving stimuli.  
 

https://github.com/KULeuven-MICAS/snax-streamer


  
 

 

In the SNAX development component, users can do better verification of their accelerator 
system without having to go through the complexity of the software setup of the SNAX cluster. 
This is especially useful for hardware designers who just need to focus on what happens on 
the signal level which are not immediately transparent to the software side. The Cocotb driver 
is the most tool for verification because the stimulus is driven by a Python program which is 
easier to driver than in vanilla Verilog testbench stimuli. 
 
Moreover, there is a set of utility Python scripts for generating stimuli. Since the SNAX cluster 
uses a register-mapped interface to control the accelerators, then writing or reading registers 
just uses simple register commands. We also provide an emulation of a DMA transfer from the 
Cocotb driver as well. 
 
The other goal of the SNAX-dev is to prepare the immediate wrappers for easy integration into 
the SNAX cluster. There are examples that show how to re-map signals from a custom 
designed accelerator to comply with the simplified interface of the SNAX cluster. With the 
wrappers already prepared by the SNAX-dev level, integrating into the SNAX cluster is easy 
since it complies with the custom interface.  
 
The idea is that after development and testing is done in the SNAX-dev, benderizing the 
components into the SNAX cluster makes it convenient for integration. We just need to update 
the Bender file from the SNAX cluster, and it automatically pulls in the components from the 
SNAX-dev repositories. 
 
From Figure 12, we can see that each GeMM, and SIMD accelerators each have their own SNAX-
dev setups.  Interestingly, each setup uses the SNAX chisel generated hardware. Especially 
the streamer which is an integral part of the accelerator because both GeMM and SIMD are just 
data path components. There exists a reshuffle and custom accelerators that are not 
developed with Chisel, but with vanilla Verilog code. However, since the streamer is important 
for accessing data, we can combine the custom accelerators with the generated streamers.  
 
 

4.6. SNAX Cluster 

 

 
 



  
 

 

FIGURE 18: SNAX ACCELERATOR-CENTRIC COMPUTE CLUSTER 
 
The SNAX cluster is the main system that integrates all accelerators and has all the peripherals 
added to it. Figure 18 shows this. It contains the main memory, a complex TCDM interconnect, 
Snitch cores for controlling the accelerators, an instruction cache that shared with all the 
Snitch cores, a DMA to transfer data from an external memory and into the TCDM memory, and 
AXI interconnects for communicating outwards of the cluster. 
 
The SNAX cluster has several design-time configurations, but a few are notable ones are: 

• Number of Snitch cores. 
• Number of accelerators controlled per each Snitch core. 
• List of accelerators to attach. 
• Number of accelerator ports, bandwidth of each port, and how to connect to the 

complex TCDM. 
• Memory size and number of banks. 

 
These notable configurations are the basics for designing the architecture. Since SNAX is an 
extension of the original Snitch cluster, the cluster is generated through a template with a set 
of configurations. Figure 19 shows a sample template configuration that also includes other 
customizable features:  

 
FIGURE 19: EXAMPLE CONFIGURATION FOR A SNAX CLUSTER 

 



  
 

 

From this configuration, we have a SNAX accelerator set that describes what accelerator to 
add, the number of TCDM ports it uses, the number of accelerators is controlled with one core, 
and configurations to indicate how it connects to the TCDM interconnect. 
 
It is worth noting that there are two kinds of TCDM interconnects, a narrow interconnect that 
has a low bandwidth (64 bits per port) and a wide interconnect that has a higher bandwidth (512 
bits per port). The narrow interconnect has fine-grained access to the memory but has higher 
interconnect complexity as the number of accelerator or core ports increases. The wide 
interconnect has a higher granularity of access making it less flexible since it needs to access 
data in super banks (as indicated by the sub boxes in the memory). The wide interconnect: 
however, has a smaller number of ports to manage and therefore has less circuit complexity. 
 
With the accelerators prepared in the SNAX development phase, these are easily integrated 
into the system. The SNAX cluster uses RISCV CSR instructions to control the accelerators. 
We have examples of prepared libraries showing functions with inline assembly instructions in 
C code to control the accelerators. Because of the register-mapped interface and the CSR 
instruction control, we can conveniently control the accelerators by just modifying the register 
configurations. The Figure below shows a code snippet of the SNAX GeMM library showing how 
to program the accelerator: 
 



  
 

 

 
FIGURE 20: EXAMPLE PROGRAM FOR CONFIGURING THE GEMM 

 
To demonstrate one of our earlier prototypes, we combined three accelerators: a GeMM, a 
SIMD rescaler, and a data reshuffle. The Figure below shows this architecture: 
 

FIGURE 21: AN EXAMPLE INCLUDING A NARROW STREAMER-RESHUFFLER, NARROW-WIDE STREAMER-GEMM AND WIDE STREAMER-
SIMD. 



  
 

 

 
In this prototype, the GeMM does an 8x8x8 (8x8 matrices with 8-bit integers each element). It 
has two input ports, where each takes in 512 bits of 8x8x8 matrices each port. It produces an 
8x8 matrix with 32-bits per element, resulting in a 2,048 bits bandwidth for the output. To 
reduce the complexity of the narrow interconnect, we maintained the inputs of the GeMM on 
the narrow interconnect and placed its output on the wide interconnect instead. Since the 
output of the GeMM occupies all 32-banks (each bank is 64 bits) then it makes sense to place it 
on the wide interconnect instead. The SIMD is a rescale accelerator that takes the 8x8x32 and 
rescales it back to 8x8x8 to be used in another subsequent matrix multiplication of size 8x8x8. 
The data reshuffler is a supporting module that is aimed for transposing matrices. For matrix 
sizes that are larger than 8x8, (e.g., 16x16 or 32x32) we need to divide the matrix into sub-
matrices. In operations that require transposes like AxBT we need to have a dedicated 
reshuffle to handle element-wise transpositions. This example demonstrates how we can 
easily integrate multiple heterogeneous accelerators in a single shared memory system.  
 
With the complete SNAX platform, we re-iterate the main sections: (1) SNAX Chisel contains 
Chisel generated hardware accelerators, and this is where we generate our accelerators. If a 
user has their own custom accelerator, they can utilize the parametrizable streamer to be 
augmented into the main datapath. (2) The SNAX development is used as an intermediate 
verification step. The goal is to create a wrapper that connects correctly into SNAX cluster and 
to do more rigorous verification before the final integration. Users can also test and monitor 
the mechanisms in the SNAX development phase. Lastly, (3) is the SNAX cluster with design-
time customization on how to connect the accelerators into Snitch cores and into the TCDM 
memory. With the uniformity of the hardware and software interfaces, and with the 
customization of data accesses the SNAX platform provides a convenient way for users to 
integrate their custom accelerators. 
 
 

5. Conclusion 

This report provides a comprehensive overview of SoC architecture and the rapid design and 
prototyping environment. The report began by outlining the objectives, setting the foundation 
for the subsequent discussions. It then delved into the SoC architecture overview, explaining 
the key elements and interconnectivity within the system. The rapid design and prototyping 
environment were thoroughly explored, highlighting the tools and methodologies employed to 
accelerate the design cycle. 
 
The significance of SoC architecture lies in its ability to integrate diverse components and 
subsystems into a cohesive system. The support infrastructure domain, interconnected with 
L2-clusters, enables rapid SoC generation. This architecture facilitates the integration of 
various accelerators, such as RISC-V cores with various accelerators sharing tightly coupled 
data memory (TCDM). 
 
The rapid design and prototyping environment play a crucial role in reducing time-to-market 
and enhancing productivity. By utilizing advanced tools and methodologies, designers can 
efficiently generate their SoC designs while reducing the risk of potential issues thanks to 
reused IPs. 
 



  
 

 

It is important to acknowledge the limitations of this report, such as the focus on an initial 
architecture and its prototyping environment. Further research can explore improved 
architectures to overcome challenges such as processing, interconnect and memory 
bottlenecks. 
 
In conclusion, the report provides detailed information on SoC architecture and the rapid 
design and prototyping tools and environment in enabling efficient and effective SoC designs. 
By leveraging these approaches, designers can navigate the complexities of modern chip 
design and deliver innovative solutions in a timely manner. 
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