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1 Purpose of this Document 
 
This document is intended to provide technical requirements of Neural Network (NN) 
accelerators for implementation in WP2.  These are derived from two classes of source: 
amalgamated input from industrial partners and ‘local’ research from WP itself (Figure 1). 
 

 
 

Figure 1 How WP4 fits with its dependent work packages, focusing on the hardware development 
 
The scope of this document includes: 
• A summary of industrial partners’ application interest areas 
• A summary of industrial partners’ current and future technical interest areas 
• Identifying common functions where there would be good “bang for the buck” with hardware 

acceleration 
• Identifying new functions for support in less-developed areas — particularly in SNNs — and 

their commonality with the functions above 
Some of these topics are already well defined; others, particularly the developments in Spiking 
Neural Networks (SNNs), are still evolving. 
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2 Context 
 
Artificial Neural Networks (ANNs) are used increasingly in numerous applications which deal with 
imprecise inputs.  Major strides in Neural Network (NN) applications have been made recently, 
largely due to the availability of increasing processing power – with a corresponding cost in 
energy.  Producing dedicated hardware accelerators to provide much of the core functionality of 
existing algorithms will give correspondingly higher energy efficiency.  A particularly clear initial 
example would be a more appropriate selection of data types. 
 
Beyond accelerating existing algorithms, the prospect of new processing paradigms suggests 
even greater energy savings may be achievable.  It is estimated that the energy-efficiency of 
biological brains may be around five orders of magnitude greater than current ANNs and so 
reaching a fraction of this could produce significant power-consumption benefits.  This inspires 
the development of Spiking Neural Networks (SNNs). 
 
The first function of WP4 is to amalgamate the requirements of existing NN applications to 
identify a practical subset of operations which may benefit a wide range of needs.  Industrial 
partners have supplied example applications and these have been analysed with their 
component functions consolidated into practical components.  This may also involve some 
adaptation of the original algorithms to allow implementation on realistic, low-power 
processing elements.  Flexibility of the resultant hardware is desirable, providing this does not 
seriously compromise its overall efficiency.  The outcome will need to be matched to the 
system requirements, encompassing architecture as well as processing, notably reducing 
costly data transport by moving much of the repetitive work close to its appropriate memory 
when feasible and supporting operand movement efficiently when this is not practicable. 
 
The second function of WP4 is to devise more energy-efficient alternative approaches to 
processing.  Synthetic ‘Neural Networks’ come in at least two ‘flavours’: both ‘conventional’ 
Artificial Neural Networks (ANNs) and Spiking Neural Networks (SNNs) [18] are considered here.  
SNNs share some characteristics with ANNs – notably in their complex interconnectivity and 
imprecise (low precision) computing needs – but have some fundamental differences in that they 
possess state that evolves through time, as opposed to working on static (or ‘staticized’) data.  An 
analogy would be that SNNs are procedural programming to ANNs functional programming, 
which potentially makes SNNs more appropriate for real-time applications.  It is possible to 
translate existing ANNs into SNNs with equivalent function, although the results are not always 
efficient.  WP4 is attempting to identify more suitable paradigms which are closer to the 
biological ‘prototype’!  Ideally, the same hardware accelerators would adapt to support both ANN 
and SNN frameworks. 
 
A related objective is to determine appropriate data types for implementation based on 
commonality within the set of use-cases. Since NN operations are inherently approximate so the 
cost of computation, and of both data storage and transfer, can be significantly reduced by using 
appropriate representations.  Such types can apply to both ANNs and SNNs and synergy of 
function is sought here. 
 
A final purpose applicable to both ANNs and SNNs is to investigate architectures to support 
Dynamic Neural Networks (DyNNs) [11] — NNs which are configurable to degrade gracefully, either 
in active area or time, such that the processing (energy) demand can be decreased whilst the 
precision of the processing remains ‘good enough’ for the users’ applications.  This will require 
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network configurability and may need continuous ‘profiling’ of operation to relate effort to 
performance.  A related issue is the ability of an NN to ‘learn’ continuously, rather than being 
(expensively) ‘trained’ once, at its inception.  This shares some characteristics with the DyNN 
requirements in performance monitoring and feedback. Biological networks (unlike current 
ANNs) are continually adapting. 
 

3 Users’ requirements 
 

3.1 WP1 applications 
 
The first function of this document may be summarised as requirements from WP1 having been 
translated into NN terms for input to WP2.  Industrial partners’ NN applications’ requirements are 
summarised in Table 1, expressing the current interest for ANNs and SNNs in each application 
area from the point of view of the industrial partner. The table also addresses the perceived 
importance of DyNNs for energy saving and dynamic adaptability (‘learning’) in each case.  The 
ability of an NN to ‘learn’ in parallel with inference should enhance its adaptivity to changing 
conditions, both in the environment it is processing and in its internal configuration: the latter of 
these can be a significant contributor to both fault tolerance and provide guidance for dynamic 
(re)configuration. 
 

Partner Application ANN SNN DyNN Learning 
BOS Siren detection and 

tracking 
Yes Yes Yes Maybe 

GNA Deep noise suppression Yes Yes Yes Yes 
GNA Speech quality 

prediction 
Yes Yes No No 

TASE On-board computer 
vision 

Yes Yes No Yes 

VIN Traffic analysis in live 
video surveillance 

Yes No Maybe Maybe 

TABLE 1 APPLICATIONS REQUIREMENTS WITH RESPECT TO NEURAL NETWORK IMPLEMENTATION 
 
Table 2 enhances the requirements from Table 1 with some further characteristics which are 
applicable to any NN.  The terminology used here includes: 
 

Pruning: the removal of ‘insignificant’ connections either post-training or, iteratively, 
during training.  This reduces the connectivity of the network which can save effort. 
 
Quantisation: the reduction in the precision of value representation. 
 
Binarisation: quantisation to the Boolean level where connections simply exist or not. 
 
Distillation: iteration of training whereby an initially trained NN is used to train a smaller 
NN rather than resorting to the original data. 
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Partner Application Pruning Quantisation Binarisation Distillation 

BOS Siren detection and 
tracking 

Yes Yes Yes  

GNA Deep noise 
suppression 

Yes Yes Maybe Yes 

GNA Speech quality 
prediction 

Yes Yes Yes Yes 

TASE On-board computer 
vision 

Yes Yes Maybe Maybe 

VIN Traffic analysis in live 
surveillance video 

Yes Yes Maybe ? 

TABLE 2 EXTENSION OF TABLE 1: FINER DETAILS 
 
The following section defines some more specific requirements for hardware development and 
is a summary of the requirements listed in deliverable D1.1, included here for ease of reference. 
 
 

3.2 Deep noise suppression & speech quality prediction (GN Audio) 
GN Audio put forward two related applications as use-cases. Though similar, there are specific 
constraints for each and so these are listed separately. 
 
3.2.1. Deep Noise Suppression 

 

Outline of application 
Deep Noise Suppression (DNS) or Speech Enhancement aims to improve the quality of both Tx 
(uplink) and Rx (downlink) speech signals by reducing background noise, thereby improving their 
quality or intelligibility.  This is a challenging task, due to the vast number of complex acoustic 
situations that may arise in the real world, such as the presence of an undesired speaker (referred 
to as a “jammer”) close to the main user’s microphone. Thus, Speech Enhancement can be seen 
as an umbrella term for more specific denoising tasks.  It is considered a “hot topic” in the wider 
communication and computer industry, with large companies and academia dedicating massive 
resources to it1 although not necessarily focusing on edge processing. 
Requirements come mainly in terms of power, overall processing requirements, latency for I/O 
audio processing. 
 
Application requirements 
The requirements presented here for Speech Enhancement are largely based on those derived 
and stated in Deliverable 1.12 (using an ANN) and are summarized in Table 3. Although the initial 
implementation should be an ANN, GN Audio are open to the possibility of re-implementing the 
network as an SNN. 

 
1https://arxiv.org/pdf/2202.13288.pdf 
2WP1_Deliverables_v2 

https://arxiv.org/pdf/2202.13288.pdf
https://tuenl.sharepoint.com/:w:/r/sites/ULPEUprojectproposal/Shared%20Documents/WorkPackage1-UseCases/WP1_Deliverables_v2.docx?d=w38d747c4ecc548d2b56d5ee5e7e60baf&csf=1&web=1
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For online learning approaches the following should be supported: 

• Effective backpropagation 
• Teacher-student network updates 
 
Metric Unit Value 
Latency 
 

I/O latency 
RTF3 

< 2 ms 
< 0.8 

Power Consumption mW / MMACs 
Overall 

< 0.1 
< 0.2 W 

Processing needs MMACs > 4350 
Memory MB > 75.5 
Memory BW MB/s > 72 MB/s 
Quality VISQOL4 

Mean-opinion score (MOS) 
> 4 

Precision  Float32, Float16, Float8(?), Int8 
TABLE 3: LIST OF REQUIREMENTS FOR SPEECH ENHANCEMENT USE-CASE 

 
 
Hardware implications 
The processing and memory bandwidth requirements here are not severe.  The size of the 
memory implies the need for SDRAM which is comparatively power-hungry.  It will be difficult to 
accommodate an on-chip SRAM of this size; it may be possible if the requirement were reduced, 
for example by using smaller variable types.  In any case the energy requirement will be dominated 
by data movement which will need to be carefully managed; this may be an application that may 
benefit from optimisation using the techniques of Dynamic Neural Networks (DyNN). Hardware 
developed to support the principles of DyNN is likely to be of wide applicability.  
 
The desire to explore spiking networks for this application motivates the development of a 
pipeline to support SNNs. Ideally, this should re-use as much as possible from the ANN design, to 
maximise productivity. The principal point of distinction between an ANN and an SNN is that in 
the latter time plays a fundamental role, both in the decay of state variables (such as the 
membrane potential) and in the modelling of inter-neuron delays. In the case of the ANN time 
plays a much less important, although there is an implied time base in ANNs networks that employ 
recurrent connections (such as GRU and LSTM). For the SNN the inclusion of interneuron delays 
in the spike delivery system can consume significant on-chip resource, but also renders the SNN 
a potentially more natural fit to process data that is inherently timed. 
 
The inclusion of learning as a requirement adds a new dimension to the hardware development. 
Although generic ‘back propagation’ is stated as a required learning algorithm, alternative 
learning schemes might be possible such as Backpropagation Through Time (BPTT) and Forward 
Propagation Through Time (FPTT). For the spiking network techniques such as surrogate 
gradients and eProp would be the best known and hence the first to be considered. Before 
developing hardware to support these alternatives, they would need to be modelled at the 
algorithmic level and assessed by the WP team in consultation with GNA to ensure that they meet 
performance goals as well as energy constraints. 
 
 

 
3https://devopedia.org/speech-recognition 
4https://arxiv.org/pdf/2004.09584 

https://arxiv.org/pdf/2004.09584
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3.3.1 Speech Quality Prediction 

Outline of application 
The field of speech quality prediction can be divided into full-reference (also known as ‘intrusive’), 
which requires a clean reference signal to compare against, and reference-less (also termed 
‘non-intrusive’), which operates on the given signal only.  While there exist several full-reference 
metrics based on DSP or perceptual models (PESQ, POLQA, ViSQOL etc.) that correlate well with 
a human-attributed MOS, these are often computationally expensive and it might be beneficial to 
“approximate” them using an optimized, ANN-based implementation running on an accelerator.  
However, due to the lack of reference signals in real-world scenarios, most of the focus will be on 
reference-less methods. 
 
Reference-less methods often rely on statistical models, machine learning algorithms and blind 
signal processing techniques to estimate speech quality.  These approaches can analyse speech 
signals and extract relevant features, such as spectral or temporal characteristics, to predict the 
perceived quality without requiring a reference signal. 
 
Application requirements 
The requirements for Speech Quality Prediction are based on numbers from deliverable 1.15 
 

Metric Unit Value 
Latency 
 

I/O latency 
RTF 

< 1 ms 
< 0.5 

Power Consumption mW / MMACs 
Overall 

< 0.1 
< 0.01 W 

Processing needs MMACs  > 5.3 
Memory MB > 0.6 
Memory BW MB/s > 17 MB/s 
Precision  Float32, Float16, Float8(?) , Int8 

 
TABLE 4: AS IN TABLE 3, MMACS REFERS TO MILLION MULTIPLY-ACCUMULATES PER SECONDS, 
MB STANDS FOR MEGABYTE (1 MB = 1024 KBYTE) AND RTF STANDS FOR REAL-TIME FACTOR. 

 
 
Hardware implications 
The application here looks readily feasible, the challenge being the extreme power consumption 
requirement, which would be dominated by data movement and therefore primarily the memory 
architecture.  The memory requirement can be met using SRAM in contemporary technology 
although the address and data buses are likely to contribute significantly to energy costs. 
 
The non-standard data types also offer the opportunity to develop custom hardware to compute 
with greater efficiency that would be achieved using generic hardware such as a GPU. 
 
3.4 Acoustic scene analysis, focused on siren detection and tracking (Bosch) 
 
Outline of application 
Within the scope of this use-case, we would like to extract information about emergency vehicles 
from an acoustic scene.  In a first step, the presence of an emergency vehicle should be detected 
based on siren sounds and, in a second step, its spatial position should be reconstructed.  

 
5WP1_Deliverables_v2 

https://tuenl.sharepoint.com/:w:/r/sites/ULPEUprojectproposal/Shared%20Documents/WorkPackage1-UseCases/WP1_Deliverables_v2.docx?d=w38d747c4ecc548d2b56d5ee5e7e60baf&csf=1&web=1
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For detection, the following network is proposed: 
  

 
Figure 2 Network for detecting a siren given audio Mel-Spectrogram data as input 

 
The key components of this architecture are: 

• an input layer implemented by a Mel-Spectrogram of the audio signal, 
• a hidden layer (set of hidden layers) composed of GRUs or LSTMs, 
• and a readout comprising of a single linear unit with sigmoidal activation. 

 
For siren tracking the following network has been proposed: 

 
Figure 3 Network to track a siren given input data consisting of multiple channels of Mel-Spectrogram data 

 
The key components of these tracking networks are: 
 

• an input layer implemented by a Mel-Spectrogram of multi-channel audio signals, 
• a hidden layer composed of either GRUs or LSTMs, 
• a set of readout modules each comprising of three linear units with sigmoidal and tanh 

activation functions to constrain the range of the prediction to their physical plausible 
range. 
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Application requirements 
Here, we summarize the requirements for the siren detection and tracking use-case based on 
the numbers reported in deliverable 1.1. 
 

Latency Prediction < 100 ms 
Power consumption Total < 100 mW 
Precision  Float32, Float16, Int8 

TABLE 5: REQUIREMENTS FOR THE SIREN DETECTION AND TRACKING USE-CASE. 
 
It has been proposed that binary quantization of activations will be explored in the CONVOLVE 
project for this use-case. 
 
Hardware implications 
This represents a relatively small network, although the hidden layer consists of recurrent units 
(GRU and LSTM units) rather than simple sum-of-products neurons. The majority of the 
computation for this network is the generation of Mel-Spectrogram data from time series audio 
data. While a neural network might be trained to perform this task, it is unlikely that such a 
solution would be better than a dedicated accelerator using the standard algorithm. This may be 
available as an off-the-shelf component and it will not be necessary to design one from scratch. 
Thus we can focus on the neural network itself, which contains no non-standard components. A 
generic ANN pipeline design would be sufficient for the neural network component of this use-
case. 
 
The proposed use of binary activations reduces the size of the data bus carrying the activations 
(rendering them equivalent to spikes) and also simplifies the compute, since the MAC operation 
is replaced with a simpler addition operation. In this case the ability to use components intended 
for a purely spiking network (single bit activations corresponding to spike-or-no-spike) there is 
opportunity to re-use components in the binary activation ANN pipeline. 



D4.2 Requirements for hardware accelerators       
  
 

Grant Agreement 101070374          
               Page  |  12 

 

 
3.5 On-board Computer Vision (Thales) 
Outline of application 
The sheer volume of data that can be gathered by a satellite in low-Earth orbit is huge and 
processing that data is currently done almost exclusively on the ground. This process is 
constrained by the ability of the satellite to store the images until the satellite passes over a point 
on the Earth’s surface where the data can be downloaded. This delay corresponds to a potentially 
crucial time lag before any meaningful inference can be drawn and acted upon. 
 
Figure 4, below, shows the simplification that could be achieved by processing the data on the 
satellite itself: 

 
Figure 4 Illustration of the potential to improve both the responsiveness and data 

bandwidth for space-bound image processing 
 

Application requirements 
The end goal is to locate the image processing on the satellite itself, leading to significant 
reductions in latency. The camera will take images in stripes and build up an internal image over 
time. Since the image width is large (but not stated here for commercial reasons) this will require 
significant buffering before processing can begin. 
 
The current solution employs conventional GPU technology to post process the images after 
download. Specifically, a Nvidia Tesla M60, with 8 GB of memory and a max power consumption 
of 300W is used. The neural network in the current system is approximately fifty layers deep and 
contains a range of layer types, including CNNs, recurrent elements and densely connected 
layers. It also makes use of a range of different activation functions. These capabilities would 
need to be provided for any on-board solution. 
 
Hardware implications 
The current solution is an ANN, but Thales are keen to explore the possibility of a spiking network. 
Thus an initial ANN pipeline would be most appropriate, but with a modular design that will allow 
alternative implementations of components to be used to configure the design and a spike 
network. The range of connectivity types (CNN and dense) with both local and shared memory 
storage for weight/kernel information must be supported, as well as the required list of neuraon 
activation functions. 
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Low power is critical to moving this processing to a satellite, where power management is at a 
premium. An early area of investigation is the memory requirement and the best way to support 
the amount of intermediate storage required for partially-captured images. 
 
 
3.6 Video-based traffic analysis (Vinotion) 
Outline of application 
ViSense is an edge-based video analysis system that reads, analyzes and processes real-time 
video from a standard CCTV/RGB camera (24/7 measurements) for surveillance, traffic 
management, incident detection, crowd management and various other traffic cases. 
 

 
Figure 5 Visualisation of the use case 

 
Application requirements 
The current product runs 1 full HD video stream with 2 x 512x512 ANN template at 4 fps including 
tracking at 30 fps with more than 100 objects on an Nvidia Jetson TX2 at a typical consumption 
of 15 W. Most of the resources of the TX2 system are currently reserved for a single ANN 
performing object detection and classification (mainly GPU resources) and for a tracking 
algorithm (combination of GPU and CPU resources). Video decoding is currently offloaded to a 
dedicated on-board hardware. 
 
Current HW elements are:  

•     256-core NVIDIA Pascal™ GPU architecture with 256 NVIDIA CUDA cores  
•     Dual-Core NVIDIA Denver 2 64-Bit CPU 

    Quad-Core ARM® Cortex®-A57 MPCore  
•     8GB 128-bit LPDDR4 Memory  

                    1866 MHx - 59.7 GB/s  
•     32GB eMMC 5.1  
•     Accelerators for H264 encoding and decoding.  

  
    The current solution consumes approximately 20 watts. 
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Hardware implications 
In CONVOLVE we would focus on the ANN portion of the system, which is a 2x512x512 network. 
From table 1 and 2, we note that Vinotion are focused on ANNs not SNNs, with potential interest 
in Dynamic NNs and binarised networks. The basic network requires would appear to map to the 
type of hardware-based ANN pipeline that would also be appropriate for other use-cases on 
CONVOLVE. 
Analysis of the required weight precision and degree of pruning of connections would need to 
be performed to establish the savings that can be made to the fetch from weight memory. 

 

3.7 Summary of application requirements 
There is a wide spectrum of requirements listed in this section.  Unsurprisingly, the most 
common factor is the demand for low – sometimes extremely low – energy.  The processing needs 
are typically not hugely challenging for hardware implementation.  There are particular needs for 
data movement both to/from memory and I/O and this is the biggest challenge. 
In terms of processing it is clear that there is interest in less precise data types (i.e. fewer bits to 
move) and this should yield a noticeable contribution.  Nevertheless computing units situated ‘in’ 
(near) memories are appropriate for most of these applications. 
 
Flexibility of processing is clearly required, either by multiple processing units or by a high degree 
of reconfigurability in operation, whilst still fitting within the overall architecture. Network 
demands include both ANNs (with DyNN functionality) and SNNs (as a proof of concept at this 
stage). Data storage that should be supported includes both local co-efficient (for CNNs and small 
dense networks), and more remote access to larger shared memory (for fully connected layers of 
neurons). 
 
3.8 SSN development 
Beyond the requirements derived from pre-existing applications, WP4 is researching new 
developments in SNN representations and implementation.  These requirements will seek to 
exploit commonality with structures supporting ANNs, with a priority given to the minimisation 
of data movement. 
 

4 Current Research and State-of-the-art in Neuromorphic Hardware 
 
4.1. Hardware-focused dynamic neural networks (UIR) 
 
Dynamic Neural Networks (DyNNs) have the advantage of being adaptable to diverse hardware 
constraints and changing computational budgets over time. They allow tangible reduction of 
computations and resource usage. However, current deep learning hardware and libraries are 
mostly optimized for static models, which are not automatically transferable to DyNNs impeding 
the practical benefit of such architectures. As an example, many DyNN techniques for spatial 
data utilise sparse computation (e.g. sparse convolutions), which are still inefficiently 
implemented on modern hardware due to the memory access bottleneck [11].   
 
Many studies rely on injecting sparsity into computation as in convolutions [31, 28]. This approach 
is known to yield limited speed-up on modern hardware due to its irregular memory access and 
computation pattern: vector accelerators such as GPUs work most efficiently when fed with a 
stream of contiguous values that keep the data paths 100% occupied. Sparsity and irregular data 
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patterns reduce the efficiency of this computing model because it is difficult to keep the data 
paths fed with data and the memories providing the data cannot supply it at 100% efficiency 
without implementing fine-grained access to individual data values, which has an overhead in 
terms of addressing. 
 
In the case of dynamic pruning, where some channels are dynamically disabled and given that all 
weights are loaded to the accelerator before any processing occurs, the accelerator is filled with 
weights that are never used. Hence, the more pruning, the more memory I/O bandwidth is wasted 
because of unused loaded weights. Overall, runtime calculations in terms of MACs will be 
reduced, but the gains in terms of performance and energy efficiency will be limited by the 
overhead in I/O access to the memory. This problem also applies to the early exit or skip layers 
strategies, since devices that are optimised for static neural models will potentially load the 
weights of the consecutive layers proactively, while some layers might be skipped or never used 
[16]. 
 
To tackle this issue, one avenue is to redesign the network topologies and learning algorithms to 
integrate sparsity [24] or reflect from the hardware side by proposing different routing strategies 
of features maps; e.g. storing feature map batches within memory buffers to reduce off-chip 
accesses [14]. Another more promising avenue is to codesign algorithms and hardware for 
accelerating DyNNs [32]. In this context, reconfigurable arrays play a major role thanks to their 
flexibility and reconfigurability. Various papers focused on one aspect of dynamicity to deploy 
such as work by Huang et al. with deformable convolutions [15] and Paul et al. with early-exit 
networks [22].  
 
Based on the conception of early-exiting networks, it is conceivable that deeper layers in such 
types of networks will be less frequently used than the early ones. Thus, by exploiting this 
property, and due to the limited FPGA memory, Paul et al. suggested in [16] storing the first 
convolutional layers’ parameters in the on-chip BRAM while keeping the remaining set of 
parameters and results in the off-chip DDR memory. A DMA is set to transfer data between the 
external DDR and the on-chip buffers and a controller is configured to generate signals for the 
different implicated modules (e.g. convolution operation, activation function, pooling). 
 
Moreover, since convolution operators are the most resource-demanding, a convolution engine 
was designed through 16 processing elements responsible for MAC operations. As for scheduling, 
computations are parallelised; the DMA loads fragments of input feature maps as well as kernel 
weights into the on-chip buffers for convolution. Once the feature map is output, the DMA fetches 
another fragment of the input with a new set of kernels. 
 
Gao et al. proposed in [33] a potential solution, coined DPACS, from both the algorithm and 
hardware perspectives. From the algorithm standpoint, DPACS uses a dynamic pruning block 
(DPBlock) that produces a fine-grained spatial mask and a coarse-grained channel mask 
dynamically through trained 1x1 convolution and fully connected layers respectively. The two 
masks are designed to be shared among all the layers within a DPBlock helping to amortise the 
mask generation overhead and facilitate efficient hardware processing across the shared layers. 
As for the hardware implementation, a network-specific dynamic data flow engine is designed to 
process the irregular data flow arising from the pruning operations with a flexible pipeline using 
an elastic line buffer. Finally, the coarse-grained channel mask is designed in such a way that it 
can be precomputed using only the sparse output of an earlier DPBlock, and that the channel 
masking groups will fit the weight storage layout in memory. The number of IO memory accesses 
can thus be reduced to only those necessary for loading needed weights. 
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While FPGAs provide enough flexibility for hardware/software codesign in the context of DyNNs 
some studies criticized using FPGAs for runtime applications because of the overheads of 
hardware configuration. Bouzidi et al. proposed an alternative that capitalized on the supported 
Dynamic Voltage and Frequency Scaling (DVFS) features of traditional CPU and GPU hardware, 
where the DVFS settings are jointly optimized with the early-exiting features to minimize energy 
consumption [4]. 
 
In conclusion, few works in the literature address the potential implementations of DyNN on 
hardware devices, which opens interesting investigation paths in state-of-the-art research. 
 
4.2. Hardware-focused Spiking Neural Networks 
 
A key feature of biological neural networks is the sparsity of connectivity and sparsity of activity, 
where sparsity means that only a small subset of elements are non-zero. Accelerating arbitrary 
sparse connectivity and the efficient processing of sparse-in-time events is a desirable feature 
of any hardware aimed at accelerating neural network models. 
 
4.2.1 Neuromorphic Hardware 
Since the work of Rosenblatt in the 1960s, implementing neural network models more directly in 
hardware has been an area of research interest [25]. The rationale behind this has been that 
efficiency and performance gains may be manifest by reducing the number of levels of 
abstraction between algorithm and physical computing substrate. Broadly, the acceleration of 
ANNs has been carried out by expressing ANN models as linear algebra and exploiting hardware 
for accelerating matrix-vector operations, GPUs. 
 
Though this approach can be applied to spiking models, the sparsity of activity in space and time 
that is common in spiking models can make this inefficient. Neuromorphic computing systems 
seek to accelerate such sparse operations by mimicking the structure and connectivity patterns 
seen in biology at a hardware level. 
 

 
Figure 6 Neurogrid analogue neuromorphic processing board, developed by Stanford University. It models neurons at 

the level of ion channels 
 
Work on neuromorphic hardware systems that emulated the behaviour of biological neurons 
was pioneered by Mead in the 1980s and 1990s (Mead, 1990). Direct descendants of this work are 
the analogue and mixed signal approaches seen in projects like Neurogrid [3] and BrainScaleS 
[20, 27]. The analogue electronics approach has the potential to be significantly lower power 
than an equivalent digital network. However, there are several limitations in this approach. 
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First, the manufactured characteristics of analogue hardware vary much more than those of 
digital.  Since the functionality can be distorted by such variations, analogue circuits are more 
difficult to use where identical and consistent behaviour between chips is required. Second, 
since this variability becomes more pronounced at smaller geometries, analogue circuits are 
not represented at the more advanced technology nodes, such as 22nm and below. This limits 
their competitiveness. Third, while digital circuits can be time-multiplexed to save on area, 
analogue circuits do not typically make use of this technique. Instead physical neurons are laid 
out one-to-one corresponding to the target network. This saves on data movement (and hence 
energy) since the weights can be located where they are used, but ultimately limits the size of 
network that can be implemented in an analogue process. It is thus no surprise that the majority 
of commercial neuromorphic products are digital. 
 
 
 

 
Figure 7 Marketing image of the new Loihi-2 neuromorphic processor 

 
Low-level digital neuromorphic approaches include TrueNorth [1], Loihi [6] and Loihi 2 [10].  
SpiNNaker [8] and SpiNNaker2 [9]. are examples of systems that define neuron models at a 
higher level of abstraction to permit research and rapid iteration at the neuron and network level. 
The SpiNNaker architecture is treated in more detail next, but is distinct in that it is a many-core 
system that emulates neurons in software, in contrast to the Loihi and TrueNorth chips that 
implement neurons directly in hardware. Recent smaller start-ups such as GrAIMatter Labs are 
now marketing a spiking neuromorphic processor, NeuronFlow [21] that emphasises the 
sparseness inherent in the spikes, the connections and the events as methods to lower the power 
consumption of their image processing hardware. 
 
4.2.2 The Human Brain Project: BrainScaleS and SpiNNaker 
 
Considerable recent development work in simulating and researching SNNs has been performed 
as part of the Human Brain Project (HBP), a major EU-funded project currently in its closing 
phases.  This included two hardware development streams: BrainScaleS (Heidelberg) [20] which 
built analogue neuron models and SpiNNaker [8] where neuron models are implemented in 
software with a degree of digital hardware acceleration.  As part of the latter work the 
SpiNNaker2 chip was constructed as a partnership between Manchester and TU Dresden [13]; 
this is now being moved towards commercialisation.  Experience from the chip’s predecessor 
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was incorporated in the form of hardware acceleration for some of the ‘bottlenecks’ in the form 
of mathematical accelerators and improved networking and communications.  
There is much more to be done here, in particular supporting data types which are better adapted 
to neuromorphic models, probabilistic computing and the adaptation of spike routeing to 
accommodate network robustness, dynamic switching (for DyNN support).  The most common 
code executed on SpiNNaker is the interrupt-driven response to arriving packets (containing 
spikes from neurons resident on other processors in the machine). Each such spike arrival 
triggers a DMA from shared memory to retrieve a row of the synaptic matrix. The returning row 
then triggers the unpacking of the contiguous data to extract weight, delay and target neuron 
index information for the sparse synaptic connections that are targeted by the spike. This data 
transformation process could be accelerated with a configurable hardware block that would 
significantly increase the energy efficiency of simulation. This work would be applicable to both 
ANNs or SNNs. 
 

 
Figure 8 A 48-node SpiNNaker board, release in 2011, consists of 48 nodes each containing 18 ARM 968 cores and 

proprietary routing technology 
 

While SpiNNaker supports some forms of learning in hardware, including neuromodulated Spike-
Timing Dependent Plasticity (STDP) [7] and e-prop [2], these methods exploit the fact that neuron 
and synapse modelling is carried out in software with hardware acceleration being dedicated 
towards the processing of spikes; the SpiNNaker architecture provides no hardware acceleration 
for learning. From the research that has been carried out using SpiNNaker as a platform, it has 
become clear that support for learning is highly desirable. This may be achieved through real-
time activity monitoring to facilitate synaptic adaptation.  
 
The CONVOLVE project will investigate novel learning algorithms for spiking networks. We will 
consider their hardware implementations if time permits, but will assume that learning is handled 
in software as a default position. 
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4.3 Hardware constraints from online learning algorithms 
 
For Backpropagation Through Time (BPTT) in SNNs it is desirable to make both the forward pass 
and the backward pass sparse. Normally, surrogate gradients have a dense backward pass, but it 
can be implemented sparsely without loss of accuracy [23]. This could be implemented in 
hardware as a custom CUDA-like kernel.  However, it still has backward locking and cannot be run 
online. 
 
One approach to achieving online learning is to use an algorithm with even smaller memory 
demands than BPTT, which can be done with approximate Real Time Recurrent Learning 
(RTRL) [34]. The resulting accuracy is not as high as BPTT, but it has the same time complexity 
without the requirement of storing the activation history.  Modern approximations of RTRL rely 
on synaptic eligibility traces to solve the temporal credit assignment problem, which usually 
necessitates maintaining at least one additional dynamic state variable for each synapse.  
Depending on the precise loss function used in SNNs, these traces often need to be updated at 
every time-step.  Since these variables are used during learning, they typically must be full 
precision, although reduced bit-width implementations have yet to be explored in detail and may 
be feasible. Specifically, synaptic eligibility traces, as used in SuperSpike [35] and e-Prop [2] 
create extra demand on both memory and computing and thus would offer substantial savings if 
some of this complexity could be accelerated at the hardware level. 
 
 
Similarly, continual learning algorithms often require additional state variables to store 
importance values for each model parameter, similar to conventional optimizers such as Adam 
[36], which implement per-parameter learning rates.  While these variables do not need updating 
at every time step, they often need to be read at every step, thereby creating additional memory 
traffic. 
 
4.4 Other Related Research Areas 
 
4.4.1 Representations 
 
In ANNs, weights and activation values can take varying precisions at inference, but typically high 
precision is necessary for the back propagation of gradients, to accurately assign credit in the 
model. Two key research questions arise in relation with data representations and SNN models: 
 

1. What precision and numerical representations are necessary at the implementation 
level of SNN models? 

2. How can populations of spiking neurons efficiently and robustly encode information? 
 
Question 1 is very similar to questions that have been asked on the route to quantising ANNs.  If 
one wishes to implement a spiking model, how should the available bits best be used?  For 
instance, a subsidiary question that may be asked is how much precision do I need in synaptic 
weights to maintain the same functionality as a 'full precision' model?  A further consideration 
here is how much movement of numerical values is necessary and can computations be 
abstracted, and populations of neurons modelled by hardware units without requiring access to, 
or modelling, low-level details.  One example of a function that might be accelerated, which goes 
beyond modelling individual neurons, is the function of finding the top ‘k’ integers in a block of 
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memory.  This function is analogous to a k-winner-take-all (k-WTA) basic operation, but could 
remove the need to simulate neuron state evolution in detail.  
 
Question 2 looks at a higher level of abstraction, at the network function scale and looks more to 
understand functional links between ANNs and SNNs. This question also relates closely to 
understanding mappings between ANNs and SNNs, practically seen in ANN-to-SNN conversion 
(see D4.1). Because of the high noise environment of the brain, it seems unlikely that the spiking 
patterns of biological neural networks use dense numeric binary codes like the integer or 
floating-point ones seen in traditional architectures, more promising avenues are the high 
dimensional vectors seen in vector symbolic architectures (VSAs)  [17, 26]. 

5 Derived Hardware Requirements 
In this section we present a list of areas where custom hardware can have significant impact on 
the project goal of low-power computation using neural networks (either ANNs or SNNs). When 
asked about their interest in neural networks, all of the industrial partners expressed a 
preference for ANNs and were interested in trying out techniques relating dynamic Neural 
Networks. Therefore the initial focus of the hardware development should be to accelerate these 
types of network. Most of the industrial partners have expressed at least an interest in spiking 
neural networks but they are not sure how to harness these relatively immature compute models 
for their applications.  
 
The immediate ‘line of attack’ is to look at existing (& evolving) applications algorithms and 
solutions, to profile them and identify particular bottlenecks.  These are then decomposed into 
their common components, paying attention to data types (and where they can be compromised) 
and the functions that conventional processors struggle to support.  Highly repetitive (‘vector’) 
operations may be identified as candidates for processing ‘in memory’ – e.g. by a programmable 
coprocessor or Coarse Grain Reconfigurable Array (CGRA). 
 

 
Figure 9 Models of computation in SNNs that are sensitive to the precise timing of individual spikes are potentially 

more energy efficient than the more common rate-coded SNNs 
 

Design principles for SNNs are less well developed than those for ANNs and have not attracted as 
much industrial attention, to date.  Most current SNN implementations use spike rates to convey 
information, although it is clear from processing latency alone that biological systems (largely) do 
not.  Harnessing the temporal information in spike streams increases the information density in 
the representation. Consequently only a fraction of the number of spike events would be required 
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and thus a fraction of the calculation effort, along with the lowered latency.  This should be 
investigated with high-level models, initially of simple functions, with the objective of mapping 
the results to accelerator hardware. 
 
The training of NNs is an aspect in need of significant improvement.  In ANNs this is a very 
expensive overhead with the backpropagation of errors as the network parameters change to 
minimise the error in each layer [37]. Stochastic arithmetic for applying ‘small’ fractional changes 
as weights are altered is an interesting contemporary methodology for reducing the size of stored 
variables and, consequently, the energy costs in their transfer. A similar technique can be applied 
to SNNs, but is equally costly. 
 
Various approaches to learning have been proposed. The project will focus on back-propagation 
through time and surrogate gradient methods, which are the most popular and successful 
training methods for time-based signals in the ANN and SNN domains, respectively. These 
approaches require a record of each neuron’s recent history, which is combined with output error 
information to compute necessary changes to the synaptic weight in each connection to reduce 
the overall error. 
 

5.1 Data representation 
Data representation is an area of particular interest.  Both ANNs and SNNs are ‘programmed’ by 
tuning the strength of the synaptic weights.  Most NN models use far fewer bits to represent 
these weights than a conventional processor 32- or 64-bit word; indeed weights can be reduced 
to single bits, although intermediate formats such as Google’s (Brain Floating Point) ‘bfloat16’ [4] 
have been proposed as a good trade-off between storage efficiency and useful information 
content. They still demand support for floating point calculations. The matrix of interconnection 
weights is typically the largest data block, where  storing and fetching (as well as modifying and 
rewriting in learning systems) these values imposes a considerable energy cost. 
 
Even shorter, ‘minifloats’ – such as 8-bit values – are used in some computations and companded 
values (akin to A-law/μ-law used in audio processing) may be appropriate and computed with 
directly or on-the-fly translated into a form suitable for a more conventional processor by ‘smart’ 
DMA.  
 
An issue with shortened value representations, particularly when a network is learning, is the 
dynamic range available; a ‘small’ alteration to a value may be rounded away and have no effect.  
Rather than lengthen the storage it is proposed to facilitate stochastic (probabilistic) arithmetic 
which will approximate the desired effects whilst retaining short-form storage.  This requires the 
generation of many (adequately) ‘random’ numbers which can be done at reasonable cost in 
dedicated hardware whereas is expensive in software. 
 
Providing customised data representations tuned to the particular application to be more energy 
efficient than more general-purpose neuromorphic processors that are not optimised for any 
specific task. CONVOLVE provides the framework (in WP6) to search the space of possible data 
representations to select those that provide the optimum trade-off between accuracy and 
energy efficiency. To do this, there needs to be a range of data representations from which to 
choose, along with their hardware implementations. 
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5.2 Custom Operators 
The aim of this work is to translate algorithmic advances on sparsely connected and sparsely 
active neural networks using low-bit-width or binary activations and dynamic execution as in 
DynNNs. To do this we need accelerators with comprehensive support for their underlying 
operations. Specifically, we need dedicated support for efficient sparse matrix-vector 
multiplications in which both the matrix and the vector may be sparse. Similarly, we need support 
for conditional evaluation as needed in the case of DyNN, whereby threads commonly used on 
GPUs may be too limited. Finally, we require accelerators that can deal seamlessly with mixed 
precision arithmetic to reap the benefits of binary activation functions or spikes. For example, 
such support would allow simulation of an analogue membrane potential of a spiking neuron while 
integrating binary inputs through sparse presynaptic spikes. 
 
These accelerators should be tailored to one or more of the target applications and should be 
implemented either as tightly coupled instructions within the RISC-V processor or as standalone 
execution engines on the main bus. 
 
Requested operators include: 

1. Exponentiation 
2. Complex thresholding functions (for ANNs) 
3. Matrix and vector operations with non-standard bit-widths and mixed precision 

operations, stochastic arithmetic 
4. Colour space conversion 
5. Projective transform 
6. ‘Branch predictor’-like hardware in support of early exit in DyNNs 

 
Since time and resource on the project is limited, it is appropriate to focus on those functions 
that are beneficial to the most use-cases and would result in the largest reduction in energy 
consumption when executing the target algorithms. 
 
5.3 Data transport 
Data movement is likely to represent the most significant cost, energetically speaking.  Reducing 
operand sizes will help with this but will not provide all the desired savings.  Locating processing 
close to the memory will also provide savings; unfortunately some applications require so many 
operands that more distant ‘backing store’ becomes essential. 
The dominant feature in an ANN is supplying the Multiply-Accumulate (MAC) units, which are 
successively multiplying ‘activation’ vectors with appropriate weights for each ‘neuron’.  Storing 
the weights in a sparse matrix representation can reduce the number of MAC cycles in each 
vector and, importantly, the number of memory read operations.  This might be performed  with 
a ‘smart’ addressing unit for streaming only selected activations to the MAC.  The sparse weight 
representation is similar to that currently used for SSN weights, where activations arrive 
individually, spread over time and the MAC is degenerate to a simpler accumulator. 
 
In some problems, such as CNNs, a small set of weights is used repeatedly and these can be held 
conveniently in local storage.  In applications requiring large matrices the storage becomes more 
remote.  Here further packing of operands is important to reduce long bus switching.  It may also 
be feasible to filter of sort the weights at source, supplying only a selected subset; this technique 
fits well with the DyNN strategy. 
 
This sub-project should define, implement and integrate a flexible bus-based DMA engine to 
support these operations. The accelerator should be able to queue up a list of DMA transfers  
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freeing up the processor from these tasks. Data will be retrieved from one memory and, post 
processing, will be deposited into a second memory, local to where it will be used. 
 
To support learning, the weights must be processed and rewritten.  Thus the data unpacking 
operation should be reversible.  Implementing the inverse operation (taking unpacked data and 
compressing it into a set of contiguous words ready for transfer back to main memory) should 
also be developed if learning is to be supported in hardware. 
 
The pack operation that forms part of the support for learning would be the appropriate place to 
implement hardware in support of stochastic computation: specifically, the dithered rounding 
operation required to truncate a synaptic weight before it is written back to memory. This 
requires a source of random numbers to decide if the value should be rounded up and down during 
truncation. Such a source need not conform to very stringent constraints on the true randomness 
of the values generated, but some care must be taken as to its complexity to avoid systematic 
bias during learning. 
 
 
5.4 Streaming co-processing for ANNs and SNNs 
There are three basic types of neural networks that would cover the majority of the requirements 
for the applications required for CONVOLVE: 
 

1. Convolutional Neural Network (CNN) 
2. Generic Artificial/Deep Network (ANN/DNN) 
3. Spiking Neural Network (SNN) 

 
These differ either in the way that the weights are stored or the order in which the computation 
proceeds. For CNNs, the kernel weights can typically be stored local to where they are used and 
the fetching of the activations from the previous layer can be scheduled to maximise re-use (and 
hence minimise energy cost). 
 
For generic ANNs, the weight matrix can be larger, sparser and less regular than the CNN case. It 
may be stored in a more distant (even external) memory. But the scheduling of the fetches for the 
activations can still be regularised to reduce the number of accesses to activation memory. The 
SNN could also be a convolutional network, but typically has a sparse, irregular weight matrix. 
Since an SNN is event-driven, the pattern of accesses to the weight memory is typically irregular 
and difficult to predict.  
 
An SNN may also include the management of delays to simulate the non-zero transmission time 
of spikes. These are important in biologically plausible neural networks and may have 
significance in more abstract computation models but (outside audio processing) the use of 
transmission delays in spiking models is limited. 
 
Despite these differences, there are sufficient areas of commonality that it should be possible to 
develop a component-based toolkit of parts allowing networks of all three types to be 
constructed and optimised, using the toolchain developed in WP6 and the compiler developed in 
WP5. These components should include configurable datapath widths to support a range of data 
types, allowing highly optimised processing for each application. 
 
An accelerator that automates the implementation of these neural networks types would offer a 
significant saving in energy over a software implementation of the same functionality. Modules 
that implement specialised layer functions for ANNs such as Max Pooling, normalisation and K-
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winner takes all would also be desirable since these implement costly sorting functions that are 
slow in software but could be much faster and more energy efficient as hardware 
implementations. 
 
Figure 10 shows a possible, generic ANN accelerator, which also has some commonality with 
SNN requirements. 
 

 
Figure 10 Accelerator pipeline implementing one layer of an ANN 

 
The building blocks of a spiking neural network have commonality with those of the ANN, but the 
control flow will be different and the size of the buffers will be different as a consequence (for 
example, for the ANN the output of an entire layer will be stored locally so that it can be referenced 
multiple times. This is not required for the SNN, which is event-driven and discards each spike 
after it has been processed). The equivalent diagram for the SNN is shown below (Figure 11). In 
both of these pipelines learning may also be implemented in software running on the RISC-V 
processor or may be accelerated using custom hardware. 
 

 
Figure 11 Accelerator pipeline implementing one layer of a spiking neural network (SNN) 
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6 Placement of accelerators 
There are multiple architectural opportunities for the placement of hardware accelerators to 
support NNs of various types. 
 

Unit Operations Example(s) 
1 Operating on register variables within the 

processor 
Exponentiation etc. 

2 ISA-driven SIMD/vector accelerator; processing of 
‘novel’ data types 

Akin to Intel SSE/ARM Neon 

3 Bus-based units providing scalar-type functions Pseudorandom numbers 
4 ‘In memory’ vector processors, potentially with 

private workspace 
Semi-autonomous processing 
such as periodic updates to 
data structures 

5 I/O movement and transformation Packing/unpacking structures 
using DMA; expanding I/O 

TABLE 6: POTENTIAL ARCHITECTURAL PLACEMENT OF ACCELERATORS  
 
In this classification #1 and #2 would be ‘L0’ accelerators, the former exploiting the existing RISC-
V datapath and the latter augmenting this with its own (probably wider) registers and ALUs; #3 
covers simple ‘L1’ accelerators which may not need bus mastery whilst #5 are more complex ‘L1’ 
devices which provide data transfers. The ‘in memory’ devices (#4) are the most complex and are 
‘L2’ accelerators; they may benefit from multiple I/O buses to exploit private SRAM (e.g. for CNN 
support), effectively multiport (interleaved block) SRAM or streaming external data to provide the 
appropriate operand bandwidth. 
 

 
 

FIGURE 12: ARCHITECTURAL OPPORTUNITIES FOR CUSTOM ACCELERATORS 
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7 Proposed Hardware Development 
 
There are numerous opportunities for hardware acceleration for supporting NNs of different 
types, covering the use cases selected by CONVOLVE as well as those identified by partners from 
previous development of neuromorphic hardware. These vary in architectural location and in 
complexity.  More suggestions have been raised than it will be feasible to complete in WP2 so 
some prioritisation is suggested here based on available time and resources, the potential 
complexity of implementation, and the generality of implementation. 
 

Block Name Purpose Scale Usage 
Adders, MACs Component in 

other hardware 
Small Can be used in all other 

hardware or as a RISC-V 
extension instruction 

Exponentiation Unit Component in 
other hardware 

Small/medium RISC-V extension instruction 

Threshold function: 
RELU 

ANN threshold 
function 

Small RISC-V extension instruction or 
component in other hardware 

Threshold function: 
look-up 
table/interpolation 

Flexible 
threshold 
function for 
ANNs 

Small/medium RISC-V extension instruction or 
used in other hardware block 

Stochastic rounding 
unit 

Supports lower-
bit precision 
storage for 
learning 
applications 

Medium Learning ANNs or SNNs with 
large data storage, to benefit 
from lower storage precision 

Vector ALU supporting 
MAC and other packed 
ops 

Compute 
engine for 
ANNs/SNNs 

Medium Flexible scalable component as 
the basis for larger pipeline 

DMA with sparse matrix 
unpack and pack 

Fetch engine 
for weights 

Medium Building block of pipeline to 
operate on sparse matrices for 
ANNs/SNNs 

K-winner-take-all unit Used in 
threshold 
functions. 
Select top K 
from a list of 
values 

Medium Used in SNNs for fixed-weight 
coding, and rank-order coding. 

MaxPooling Dimensionality 
reduction in 
deep ANNs 

Small/medium Standard layer for ANNs 

Normalisation Rescale list of 
values 

Small/medium Standard layer for ANNs 

ANN accelerator 
pipeline 

Processes 
layers of an ANN 

Large Co-processor on the RISC-V 
bus 

SNN accelerator 
pipeline 

Processes 
layers of an SNN 

Large Co-processor on the RISC-V 
bus 

Table 7 List of proposed hardware components and sub-projects for development in WP2 in support of Neural 
Networks 
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7.1 Summary 
The four use-cases selection by CONVOLVE were described in detail in document D1.1 and 
summarised in this document, section 3, for convenience. It is reasonable to assume that 
technology and algorithms that are developed in CONVOLVE that will help to achieve the two-
orders of magnitude energy efficiency will be more widely applicable. 
 
All four use-cases have been designed with ANNs in mind and it is reasonable to focus our efforts 
in developing neural network hardware that is targeted on ANNs (with and without support for 
Dynamic Neural Networks) to help to deliver the point demos in month 18. However, the essential 
components for such an ANN pipeline would also be appropriate for a spiking network and so with 
some forethought we can maximise the flexibility and applicability of the hardware developed in 
the WP4/WP2 crossover to cover as wide of range of future applications as possible. Hence, we 
identify a range of different memory management models, threshold functions and data formats 
and must ensure that components based on these will work together in whatever combination is 
required for the task in hand. 
 
The hardware proposed here is challenging in places but the designs should be realisable in the 
timeframe of CONVOLVE, with the first versions of the major components delivered in time for 
the point demos in month eighteen and the complete and optimised set, incorporating feedback 
from their deployment in implementing the use-cases, by month 33. 
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