

Grant Agreement 101070374 Page | 1

Seamless design of smart edge processors

GRANT AGREEMENT NUMBER: 101070374

Deliverable D6.1

Modular Architecture Template Definition

Grant Agreement 101070374 Page | 2

Title of the deliverable Modular Architecture Template Definition

WP contributing to the deliverable WP 6

Task contributing to the deliverable Task 6.1

Dissemination level PU – Public

Due submission date 30/04/2023

Actual submission date 30/04/2023

Author(s)

Gianna Paulin (ETHZ)

Michael Rogenmoser (ETHZ)

Tim Fischer (ETHZ)

Vikram Jain (KUL)

Guilherme Paim (KUL)

Internal reviewers
Bram Verhoef (AXE)

Egbert Jaspers (VIN)

Document
Version

Date Change

V0.0 15/03/2023 Initial version with ToC and first content

V1.0 14/04/2023 The finalized draft ready to internal revision

V1.1 28/04/2023 Implemented feedback from reviewers and finalization

Grant Agreement 101070374 Page | 3

Table of Contents
Table of Contents ... 3

Deliverable Summary .. 5

1. Objectives ... 5

1.1. WP6 Objectives .. 5

1.1.1. Deliverable D6.1 Objectives ... 5

1.2. WP6 Contribution to CONVOLVE’s Objective .. 5

2. State of the Art and Related Work ... 7

2.1. RISC-V ... 7

2.2. PULP Platform ... 8

2.3. Heterogeneous System-on-Chips (SoCs) ... 9

3. Definition of high-level SoC Template and Accelerator Interface 13

3.1. SoC Template Overview .. 13

3.1.1. Support Infrastructure / Host Domain ... 14

3.1.2. Compute Cluster ... 15

3.1.3. Accelerator Integration Levels .. 17

3.2. General Specifications for all Accelerators ... 18

3.2.1. General .. 18

3.2.2. Clock & Reset .. 18

3.3. L0 – Accelerator: RISC-V Co-processor... 19

3.3.1. Control and Data plane: Core-V-X .. 19

3.3.2. Programming Model ... 20

3.4. L1 – Accelerator: Tightly-Coupled Accelerator ..21

3.4.1. HWPE Overview ... 21

3.4.2. Data Plane .. 23

3.4.3. Control Plane .. 25

3.4.4. Programming Model ... 26

3.5. L2 – Accelerator: Loosely-Coupled Accelerator ... 27

3.5.1. Merged: Control & Data Plane: AXI .. 27

3.5.2. Programming Model ... 27

4. Collaboration Tools ... 28

5. Required Models and Views to achieve Goals of WP6 ... 29

5.1. GVSoC Simulator .. 29

5.1.1. Required Models ... 30

5.2. ZigZag Framework .. 31

5.2.1. Required Models .. 31

Grant Agreement 101070374 Page | 4

6. Overview of WP6 Work Plan ... 36

6.1. Task 6.2: Performance Analysis and Management of ML Applications on Modular
Architectures .. 36

6.2. Task 6.3: Modular Flexibility-Aware DSE Framework for Efficiency and Fault-
Tolerance .. 36

6.3. Task 6.2: Rapid Design Instantiation and Validation of Modular and Flexible
Architectures .. 37

7. Conclusion .. 38

8. References .. 39

Grant Agreement 101070374 Page | 5

Deliverable Summary

This document describes and defines high level SoC architecture and the interfaces for
accelerators.

1. Objectives

This document “D6.1 Modular Architecture Template Definition” is a deliverable of the Work
package No.6 “Compositional architecture DSE and SoC generation”, task T6.1 “Modular
architecture template definition” under the task lead of ETHZ and sets out the modular
architecture template definition and defines the performance models required to design
modelling and design space exploration frameworks.

1.1. WP6 Objectives

WP6 deals with automated compositional system architecture design space exploration (DSE)
and system-on-chip (SoC) generation. This is done by providing a modular architecture
template consisting of a RISC-V host with one or multiple machine learning (ML) and security
accelerators.

The objectives of WP6 are defined as follows:

1) Provide a secure and modular RISC-V based SoC architecture template that eases the
integration of multiple accelerators, managing control, synchronization, data
exchange and run-time reconfiguration.

2) Create a SoC-level performance modelling framework for running ML applications on
the targeted modular runtime configurable architectures, integrating the component
models coming out of WP2.

3) Develop a rapid Design Space Exploration (DSE) framework to cycle quickly over ULP
SoC and accelerator constellations, finding the optimal balance between design-time
and run-time flexibility.

4) Realize an automated design time instantiation flow for optimal and run-time flexible
SoC generation.

1.1.1. Deliverable D6.1 Objectives

The first deliverable D6.1 of WP6 focuses on specifying the modular SoC architecture template
and defines a high-level SoC architecture and the interfaces for the accelerators designed in
WP2/3.

1.2. WP6 Contribution to CONVOLVE’s Objective

WP6 focuses on the modular SoC design and rapid deployment which makes the work package
one of the contributors to achieve CONVOLVE’s target to reduce design time of edge AI
hardware systems by 10x by focusing on the faster design time of the SoC architecture and
providing a design space exploration tool for rapid software-hardware co-design explorations.
At the same time, WP6 is crucial to bring together all developed accelerators which are needed

Grant Agreement 101070374 Page | 6

to achieve CONVOLVE’s goal to achieve 100x energy efficiency improvement by providing an
SoC template with standard interfaces to a set of ultra-low-power ML and security
acceleration blocks which exploit novel architectures, microarchitectures, circuits and
devices.

To achieve these goals, it is necessary to have customizable hardware acceleration blocks that
can be parameterized during both design and run time using a standard interface. These
blocks should allow for various configurations based on diverse application needs, including
adjustments in supply voltage, clock frequency, data representation accuracy levels,
parallelization degrees and dimensionality precision values. WP6 focuses on providing a
modular and scalable SoC with such standardized interfaces such that the design acceleration
blocks can be plugged easily to reduce the overall design time.

In addition to the RTL design itself, performance models and simulators must also be
modifiable to enable fast exploration of the design-space without sacrificing compositional
flexibility. WP6 focuses also on automated design-space exploration (DSE) and simulators
using performance models of the hardware building blocks.

Grant Agreement 101070374 Page | 7

2. State of the Art and Related Work

This chapter gives a background of the projects which are used to specify and design the high-
level SoC template. The template makes use of open-source RISC-V-based IPs from the PULP
Platform project which is introduced in the following. Additionally, we give an overview of the
state-of-the-art of heterogeneous SoC where general purpose compute cores are combined
with highly specialized accelerators.

2.1. RISC-V

RISC-V1 is an open-source instruction set architecture (ISA) that is gaining significant
popularity in the embedded systems community. It is a RISC (Reduced Instruction Set
Computing) architecture that has a simple, elegant design and is highly configurable, making
it ideal for a wide range of applications.

One of the key advantages of RISC-V is its open-source nature, which allows anyone to
contribute to the design and development of the ISA. This means that RISC-V processors can
be customized with ISA extensions and optimized for specific applications, making them more
efficient and cost-effective. Additionally, the open-source nature of RISC-V promotes
innovation and collaboration among developers, which can lead to faster and more efficient
development of new technologies.

RISC-V is designed to be vendor-neutral, which means that it can be implemented by any
processor manufacturer without the need to pay royalties or license fees. This makes RISC-V
an attractive option for companies that want to avoid the high licensing fees associated with
proprietary ISAs.

RISC-V is also designed with modularity and extensibility in mind. The ISA is divided into
standard modules which support a specific set of features such as atomic, single and double
precision floating-point operation, which can be combined to create custom configurations.
Overall, RISC-V's modular and extensible design enables a wide architectural and
microarchitectural freedom such as VLIW (Very Long Instruction Word) or vector
architectures. For example, RISC-V also specifies the RISC-V Vector Extension (RVV) which
can be used to accelerate a wide range of HPC workloads, such as matrix multiplication, signal
processing, and image processing. The RVV is highly configurable and can be customized to
suit specific application needs. In addition, it has reserved encoding space for custom
extensions. The deliberate design of the modular construct aims to facilitate easy
extensibility, allowing developers to customize the inclusion or exclusion of features based on
their specific requirements. This makes RISC-V processors highly adaptable and suitable for
various application needs. All these properties of RISC-V make it the ideal candidate to design
open-source, re-usable SoC architectures. The CONVOLVE initiative aims to achieve this
objective by leveraging these properties.

1 https://riscv.org/

https://riscv.org/

Grant Agreement 101070374 Page | 8

2.2. PULP Platform

The PULP (Parallel Ultra Low Power) Project2, a collaboration between ETH Zurich and
University of Bologna, aims to produce open-source hardware and software based on RISC-V
architecture that is scalable and energy efficient. The project has created multiple open-
source RISC-V processor cores, peripherals, and other intellectual properties required for
developing comprehensive System-on-Chips (SoCs). As part of the Convolve scheme, diverse
collaborators will utilize several PULP IPs in constructing an innovative heterogeneous SoC
featuring novel specialized accelerators.

The open-source project currently provides numerous relevant hardware and software
elements, utilizing the open-source instruction set architecture (ISA) RISC-V extensively. The
collection of intellectual properties includes several types of RISC-V cores ranging from those
that are fully Linux-compatible to low-power microcontroller cores. As part of their research
initiatives, they have integrated various extensions into the RISC-V ISA, such as XpulpV1,
XpulpV2, and even ones tailored for neural networks called XpulpNN to decrease overall
program cycle count while improving energy efficiency. These extended instructions
comprise features like hardware loops, post-increment loads and stores as well as packed-
SIMD dot-product operations amongst others. Their custom LLVM and GCC compilers support
these extensions through built-in functions and partial automatic optimization processes.

PULP also has various open-source simulators to aid in developing software on these
platforms. The C++-based GVSoC simulator [1], [2] supports running semi-cycle accurate
simulations (cycle-count up until 90% accurate) of PULP-based systems at a much faster rate
than typical RTL-level simulations. The (non-cycle-accurate but instruction-accurate) Rust-
based Banshee simulator (publication) was developed to make quick software verification
possible for scaled-up manycore systems.

For the CONVOLVE project, we make use of the extensive infrastructure developed within the
PULP project and extend them with further IPs (e.g., a scalable interconnect).

2 https://pulp-platform.org/

https://pulp-platform.org/

Grant Agreement 101070374 Page | 9

2.3. Heterogeneous System-on-Chips (SoCs)

Many recent industrial and research systems on chips for ML inference targeted towards
(extreme) edge devices exist in the literature. In this survey, the performance and power
information of the chips is gathered and plotted to evaluate and compare the existing state-
of-the-art. The herein surveyed inference platforms are limited to the constraints imposed by
energy-constrained devices on power (≤100 mW) and a circuit area smaller than 20mm2. This
review also limits to recent chips presented in and after 2019. The platforms are divided into
four categories and shown in Table 1:

TABLE 1: SURVEYED HARDWARE PLATFORMS.

Platform Type Surveyed Hardware
General Purpose [3]–[5]
Digital Accelerators [6]–[14]
Mixed Precision and In-Memory Computing (IMC) [15]–[22]
Heterogeneous Multi-Core SoCs [23]–[31]

General-purpose systems: These are commercial and research chips based on general-
purpose CPU architecture and consist of more traditional cores like RISC-V and ARM with no
specialized accelerators for AI. Some CPU cores are extended to support quantized matrix
computations standard in ML workloads. Such systems have been traditionally used in IoT
devices as they are flexible and easily programmable. Several commercial vendors provide
microcontroller units used for ML in IoT applications. Specifically, all the boards that reported
their performance for the MLPerf benchmarks have been included in this survey.

Digital accelerators: Specialized accelerators have been used extensively for ML workloads as
they provide high performance and energy efficiency. This category consists of hardware
blocks designed to accelerate a few ML layers efficiently, with extra support for precision
scalability, sparsity, etc. They are based on the typical domain-specific hardware accelerator
architecture [32] with decoupled computational units and memory.

Mixed precision and In-Memory Computing (IMC): The high data communication cost between
the memory and cores is a significant bottleneck with the traditional decoupled compute and
memory architectures. In most ML digital accelerators, the memory accesses energy
dominates the overall consumption of the system. This has led to the design of new
architectures based on near-memory computing and, more recently, IMC. The idea behind
IMCs is to compute inside the memory bit cells, which avoids any data movement during the
compute cycles. IMC is comparatively much more energy efficient and has gained a lot of
interest in recent years. Two flavors of IMC, analog and digital IMC, have been proposed. Analog
IMC provides very high energy efficiency but suffers from constraints in scaling to higher
precision, lack of dataflow flexibility, and is prone to accuracy degradation due to noise. These
constraints have led to the design of digital IMCs, which are memory blocks tightly integrated
with digital MAC computation instead of analog.

Heterogeneous multi-core System-on-Chips: Heterogeneous systems are complete
standalone system-on-chips that also provide several interfaces to connect to external world.
They typically consist of a heterogeneous combination of accelerators and general-purpose
cores. The trend of heterogeneous multi-core is driven by the premise that a single

Grant Agreement 101070374 Page | 10

accelerator does not scale well and cannot provide flexibility and efficiency for mapping
evolving ML models. Therefore, several energy-efficient simple cores can be connected in a
system, and all network layers can be mapped on the most efficient core for the given layer.
Several SotA heterogeneous SoCs from the convolve partners are included in the plot below.
These include BrainTTA, DIANA, Kraken, TinyVers, and Vega.

FIGURE 1: STATE-OF-THE-ART (SOTA) CHIP DESIGNS FOR EXTREME-EDGE COMPUTING.

Heterogeneous Chips from CONVOLVE Partners:
BrainTTA [28] is able to efficiently map various typical AI workloads, because of its inherent
flexible datapath from the Transport-Triggered Architecture (TTA). The SoC consists of a
RISC-V processor and a TTA-based accelerator. The accelerator is fully programmable and is
supported by a C-compiler, which greatly simplifies mapping various AI (and other) workloads.
BrainTTA, fabricated in 22nm FDX, has a peak energy efficiency of 29/15/2 TOPS/W (binary,
ternary, and 8-bit precision) and a throughput of 614/307/77 GOPS.

Kraken, SoC with SNN and ANN accelerators: Kraken [29] is an example for an ultra-low-power
heterogeneous SoC fabricated in 22 nm and combines a 32-bit RISC-V host core, 1 MiB of
scratchpad L2 SRAM memory, and an autonomous I/O subsystem with three programmable,
power-gateable accelerators: (1) A 1.8 TOp/s/W parallel general-purpose compute cluster with
8 RISC-V cores sharing 128 KiB of L1 scratchpad memory. The RISC-V cores support hardware
loops, SIMD sub-byte dot-product integer operations with mixed-precision capabilities, MAC
with concurrent data load (MAC-LD), and floating-point capabilities for energy-efficient digital
signal processing. (2) 1.1 TSyOp/s/W accelerator called Sparse Neural Engine (SNE) targets
spiking convolutional layers with 4-bit 3×3 filter and 8-bit leaky-integrate and fire (LIF) neuron
states. (3) Completely Unrolled Ternary Inference Engine (CUTIE) is a 1036 TOp/s/W Ternary
Neural Network (TNN) accelerator.

Grant Agreement 101070374 Page | 11

TinyVers - embedding MRAM: TinyVers [30] integrates a highly flexible-precision scalable
digital accelerator, with a RISC-V core, a power management unit and an eMRAM, to provide a
complete standalone edge-AI solution. The accelerator supports diverse AI layer types from
Deep neural networks (NNs) (CNN, FC, TCN, GAN, AE) to traditional ML models like SVM at
INT2/4/8 precisions. Fabricated in 22nm FDX, it provides 0.8-17 TOPS/W with power
consumption ranging from 1.7 μW in deep sleep to sub-mW when running real AI workloads.

DIANA - mixed-signal, mixed-precision: DIANA [31] extends the idea of heterogeneity by
combining an ULP analog in-memory core (AIMC) with a precision scalable digital NN
accelerator, an optimized shared-memory subsystem, and a RISC-V host processor to achieve
SotA end-to-end inference at the edge. The SoC achieves peak energy efficiencies of 600
TOPS/W (7bit I, ternary W, 6bit O) for the AIMC and 14 TOPS/W (8bit I/W/O) for the digital
accelerator. When end-to-end ResNet20/CIFAR-10 and ResNet18/ImageNet classification
workloads are mapped on the chip, 7 TOPS/W and 5.5 TOPS/W efficiencies are reported at
system level respectively.

Insights and Trends
Based on the survey of SotA ML processors for the (extreme) edge, qualitative and quantitative
analysis of the different key metrics, several insights and trends for future design can be
extracted. The remaining section discusses these in detail.

Accelerator Dataflow: As data movement remains the primary bottleneck in ML workloads,
finding the most optimal dataflow remains the biggest challenge. The selection of dataflow
also dictates the efficient support of different ML layers on these hardware accelerators. A
single dataflow cannot efficiently support the different types of layers; therefore,
reconfigurable architectures such as DIANA and TinyVers that support multiple dataflows
should be the ideal choice. However, careful trade-off analysis should be undertaken for
reconfigurability vs. hardware overhead and power consumption. This requires a design space
exploration for the co-design of hardware and software.

Arithmetic Precision: From the several performance plots, a strong correlation between
precision and energy or power consumption can be observed. Therefore, finding the most
optimal precision and training the models with a quantization-aware methodology to achieve
good accuracy metrics remains a primary target. Support for variable precision computation
can be beneficial to provide flexibility to support different workloads. Moreover, depending on
the models, hybrid quantization, i.e., different precision of weights and activation might be
more efficient; however, it can increase the complexity of the hardware.

Sparsity: Model compression through pruning can considerably improve performance.
However, random sparse computation can be complex to handle in hardware but has the
advantage of being relatively more accurate than structured sparsity. Therefore, a careful
trade-off analysis between the accuracy of model deployment and hardware complexity
should be undertaken. Structured sparsity can help with a known sparsity pattern making the
hardware design easier. Though the accuracy of the models with structured sparsity needs to
be evaluated, they can benefit from sparsity-aware training. Some surveyed platforms have
used sparsity (unstructured and structured), showing improved performance and should be a
future trend for hardware and software design.

Grant Agreement 101070374 Page | 12

Circuit Area: On-chip memory is the main driver for the overall chip area in most platforms.
Large on-chip memory helps keep the model data local to the chip with reduced access (time
and number) to external memory. This can decrease the system’s overall energy consumption
if the entire memory space is utilized. However, in most cases, large memory reduces the area
efficiency as more storage does not always correspond to high bandwidth data movement,
meaning that the throughput remains the same but the area increases. Analog and digital IMC
alleviate this issue by having a coupled access and compute design, shown in several
performance and area efficiency plots. For all hardware platforms, memory hierarchy design
should be evaluated through an exploration framework to find an optimal design choice with
maximum data reuse. Future designs could integrate efficient IMCs into SoCs to find a middle
ground.

Analog vs. Digital IMC: Analog IMCs are significantly more area and energy efficient but suffer
from analog noise and cannot scale to higher precision which affects the accuracy of models.
Digital IMCs are more scalable and easier to train models for; thus, many recent works have
focussed on these.

Heterogeneity: Heterogeneous SoCs tend to be more flexible and can cater to evolving ML
applications. Efficient analog/digital accelerators and IMCs can be integrated into
heterogeneous SoCs (e.g., DIANA) to take advantage of both, bringing flexibility with a
moderate reduction in energy efficiency. Recent works have shown this is a major trend in
research and academia. Multiple chips which combine ML-optimized RISC-V ISA extension
cores with multiple specialized accelerators have been introduced. Thus, this trend is here to
stay, and future designs should take advantage of this. However, challenges like compilers
which can schedule workloads efficiently on the different resources, remain a bottleneck. Fast
design exploration and full-stack hardware-software generation methodologies should be
adopted to address these challenges of heterogeneous systems.

Power Management: Finally, power management brings the required system-level flexibility to
save considerable power when mapping duty-cycled workloads. Power management should
also be used to fully exploit dark silicon in heterogeneous systems where parts of the chip are
not utilized for specific computational workloads. Future IoT devices must combine
heterogeneous systems with power management to build genuinely efficient and flexible
systems.

Grant Agreement 101070374 Page | 13

3. Definition of high-level SoC Template and Accelerator Interface

In this chapter the high-level SoC template and the different accelerator integration levels are
described. For each integration level we define the supported interfaces for the control and
for the data plane. The described SoC template is inspired by the open-source IP landscape of
the PULP Platform project [26,29]. CONVOLVE partners are free to re-use the open-source
IPs3 to design their accelerators.

3.1. SoC Template Overview

Figure 2 gives a high-level overview of the SoC template. The SoC template is split into a
support infrastructure domain which comes with a RISC-V host, a main memory, and some
peripherals. This domain is attached over a high-speed on-chip interconnect (e.g., network-
on-chip (NoC), AMBA AXI) to a set of L2-accelerators. These L2-accelerators can be the same
type of accelerator or a combination of different accelerators. An example L2-accelerator is
provided with the compute cluster (shown on the right side of Figure 2). Inside this Accelerator
a set of general-purpose RISC-V cores can be extended with L0-accelerators or can share the
tightly coupled data memory (TCDM) with a set of L1-accelerators. Each L2 and L1 accelerator
run at the same clock frequency as the SoC and/or cluster, but can be independently clock
gated.

To summarize, we define three different levels of accelerator integration in the SoC template:

• L0: RISC-V co-processor
• L1: Tightly coupled accelerator
• L2: Loosely coupled AXI- accelerator

FIGURE 2: OVERVIEW OF THE HIGH-LEVEL SOC TEMPLATE WITH THE THREE MAIN ACCELERATOR TYPES.

3 https://github.com/pulp-platform/

Grant Agreement 101070374 Page | 14

3.1.1. Support Infrastructure / Host Domain

The support infrastructure is the main frame for the SoC, providing general infrastructure for
the functionality of and interfacing with the SoC. As shown on the left side of Figure 2, the
support infrastructure includes a RISC-V support core, L2 main memory, peripherals, and an
external memory controller.

The general-purpose RISC-V support core, also termed fabric controller (FC) or host
processor, provides the necessary functionality to control the overall system. The core, in
previous PULP systems based on a lightweight RISC-V core, acts as the primary controller for
the system’s peripherals and is responsible for managing the memory of the system, both
external and the on-chip L2 main memory. As the main control core of the system, it helps
coordinate the data processing operations between the various components of the system,
namely the computing cluster, and accelerators.

The L2 memory offers a scratchpad memory for the system. It is designed to contain the
program code for the host processor and limited data to be transferred to the cluster or
accelerators. Designed to be fast, it offers limited space to temporarily buffer data between
large external memory and data within the cluster or accelerators.

To interface with the outside world, the support infrastructure also contains peripherals, such
as a JTAG for debugging. Other peripherals, such as SPI, UART, and GPIOs, are also available
as memory-mapped devices. These peripherals allow the SoC to communicate with external
sensors and connected devices.

Finally, an external memory controller is included, allowing the system to interface with a large,
off-chip memory. This external memory controller handles all interfacing with the external
device and offers on-chip devices access to the data.

FIGURE 3: BASE COMPUTE CLUSTER.

Grant Agreement 101070374 Page | 15

3.1.2. Compute Cluster

A high-level overview of the compute cluster is shown on the right of Figure 2. The cluster
consists of a parameterizable number P of general-purpose processing elements (PE) based
on RISC-V cores and is connected to the host domain over a AXI4 port (shared for control and
data plane, see Section 3.5.1). The base cluster can, therefore, be understood as a special type
of L2 accelerator and is shown in Figure 3. It can be further extended with L0 or L1 accelerators
on multiple levels as will be explained in Section 3.1.3. The compute cluster has a hierarchical
instruction cache for the PEs that consists of private L0 and shared L1 instruction caches. All
PEs and L1 accelerators share access to the tightly coupled data memory (TCDM). The TCDM is
a multi-banked (typically a banking factor of 2 which results in 2xP banks) scratchpad memory
that is explicitly managed by software and is the main way for the PEs and L1 accelerators to
access data with a single cycle latency. The DMA module within the cluster can be programmed
by the PEs to transfer data between the larger L2 main memory in the host domain and the
compute cluster. An event unit provides the means for synchronization between the PEs.

FIGURE 4: LOGARITHMIC INTERCONNECT.

Each PE is connected via two interconnects: The peripheral interconnect is a low bandwidth
bus based on PERIPH protocol or the Register protocol (see Section 3.4.3) used for the
configuration of the DMA, event unit, and, most importantly, the L1 accelerator’s control plane.
The TCDM interconnect provides low latency and high-bandwidth access to the shared TCDM
memory and is based on the so-called Logarithmic Interconnect, a forest of arbitration trees
providing parallel single-cycle access to the multi-banked memory with transparent
arbitration in the case of bank conflicts between different processing elements. The TCDM
interconnect is shown in Figure 4 and follows the TCDM protocol (see Section 3.4.2). The
complexity in terms of area and timing of the Logarithmic Interconnect can explode if to many
PEs and/or L1 accelerator ports get connected (Figure 5). Therefore, if more bandwidth is
required, the cluster needs to use the Heterogeneous Cluster Interconnect (HCI) and shown in
Figure 6. In that case the L1 accelerator should use the HCI protocol (see Section 3.4.2).

Grant Agreement 101070374 Page | 16

FIGURE 5: L1 ACCELERATOR INTEGRATION WITH LOGARITHMIC INTERCONNECT.

FIGURE 6: L1 ACCELERATOR INTEGRATION WITH HETEROGENEOUS CLUSTER INTERCONNECT (HCI).

Grant Agreement 101070374 Page | 17

3.1.3. Accelerator Integration Levels

We define three different levels of integration which can be used to integrate the accelerators:

• L0: a RISC-V co-processor
o control plane: Core-V-X, RISC-V ISA extensions
o data plane: Core-V-X, tightly coupled to the pipeline stages of the RISC-V

processor, uses the RISC-V core’s load-store unit (LSU)
• L1: Tightly coupled accelerator

o control plane: PERIPH or Register protocol, memory-mapped register file to
configurable control sequencer

o data plane: TCDM or HCI protocol, independent of the RISC-V core, uses and
controls its own streamers/DMAs

• L2: Loosely coupled AXI4- accelerator
o control plane: AXI4
o data plane: AXI4

TABLE 2: OVERVIEW OF THE SUPPORTED INTERFACES FOR EACH ACCELERATOR INTEGRATION LEVEL.
Integration

Level Plane Supported Protocols (only one per plane)

L0 Control & Data Core-V-X (Section 3.3.1)

L1
Control Peripheral Interface, Register Interface (Section 3.4.3)

Data TCDM or HCI interface (Section 3.4.2)
L2 Control & Data AXI4 (Section 3.5.1)

Table 2 gives a summary of the supported protocols for the control and the data plane for each
accelerator integration level. The protocols are described in next sections.

In Section 3.2 we specify some specifications which all accelerators need to follow. Depending
on the chosen integration level, the accelerators need to implement one of the interfaces
instructions from Section 3.3 for L0 integration, Section 3.4 for L1 integration, and Section 3.5
for the L2 integration.

Grant Agreement 101070374 Page | 18

3.2. General Specifications for all Accelerators

To keep the accelerators aligned and easy to integrate, every accelerator has to follow the
specification described in the following subsections.

3.2.1. General

All signal directions are stated from the perspective of the Accelerator. Therefore, input-
signals are signals driven by the interface logic around the Accelerator while output-signals
are driven by the Accelerator. If not otherwise indicated, all signals are active-high.

3.2.2. Clock & Reset

Table 3 gives an overview of all interface signals which each accelerator needs to support. All
the interface signals of the accelerator are synchronized to the rising edge of the reference
clock REF_CLK.

TABLE 3: CLOCK AND RESET SIGNALS.

Signal Width [bits] Direction Description

REF_CLK 1 input The reference clock with which the interface
is synchronized.

RSTN 1 input Asynchronous active-low reset.
SOFT_CLEAR 1 input Synchronous active-low soft reset.

The asynchronous reset signal RSTN is asserted during system power-up and completely
resets the accelerator. The synchronous soft clear signal SOFT_CLEAR on the other hand is
used by the interface logic to reset the Accelerator Block to a known good state or when a Soft
Clear was requested by a PE. A soft clear does not necessarily re-initialize the content of the
non-volatile memory or long-lived configuration but must unconditionally and immediately put
the accelerator into a known good idle state where it is ready to accept a new instruction.

Grant Agreement 101070374 Page | 19

3.3. L0 – Accelerator: RISC-V Co-processor

L0-accelerators are tightly-coupled Co-Processors (e.g. an FPU) to the RISC-V PEs which can
implement custom ISA extensions to accelerate specific workloads. The PEs can offload
instructions that it does not itself is able to process to the L0-accelerators. An overview of
the L0-accelerator is shown Figure 7.

FIGURE 7: BASE COMPUTE CLUSTER WITH L0 INTEGRATED RISC-V CO-PROCESSOR.

3.3.1. Control and Data plane: Core-V-X

L0-Accelerators (co-processors) can be attached to the RISC-V PEs via the Core-V-X
interface. The Core-V-X enables extending CPU with (custom or standardized) instructions
without the need to change the RTL of CPU itself. Extensions can be provided in separate
modules external to CPU and are integrated at system level by connecting them to the Core-
V-X. The Core-V-X provides low latency (tightly integrated) read and write access to the CPU
register file. Opcodes which are not used (i.e., considered to be invalid) by CPU can be used for
extensions. The official documentation can be found in the link4.

The Core-V-X interface consist of six different interfaces which are described in Table 4. The
exact signals are omitted, but are described in more detail in the documentation.

4 https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/latest/

https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/latest/

Grant Agreement 101070374 Page | 20

TABLE 4: CORE-V-X INTERFACE.

Interface Signal from CPU Signals to CPU Description

Compressed valid, req ready, resp Compressed instruction to be
offloaded.

Issue valid, req ready, resp
Uncompressed instruction to be
offloaded including its register file
based operands.

Commit valid, commit -
Signaling of control signals related
to whether instructions can be
committed or should be killed.

Memory req/resp valid, req ready, resp
Signaling of load/store related
signals (i.e. its transaction request
signals). This interface is optional.

Memory result valid, result -
Signaling of load/store related
signals (i.e. its transaction result
signals). This interface is optional.

Result ready valid, result Signaling of the instruction result(s)

3.3.2. Programming Model

L0-accelerators can be programmed by extending the RISC-V ISA with custom ISA extensions.
The RISC-V automatically offloads instructions that it cannot process over the Core-X-V
interface to the L0-accelerators. To this end, compiler support must be added for the custom
ISA extensions. Various PULP ISA extensions have already been added to the LLVM compiler5
and GCC6.

FIGURE 8: BASE COMPUTE CLUSTER WITH L0 AND L1 INTEGRATED ACCELERATORS USING THE HETEROGENEOUS CLUSTER INTERCONNECT

(HCI).

5 https://github.com/pulp-platform/llvm-project
6 https://github.com/pulp-platform/riscv-gcc

https://github.com/pulp-platform/llvm-project
https://github.com/pulp-platform/riscv-gcc

Grant Agreement 101070374 Page | 21

3.4. L1 – Accelerator: Tightly-Coupled Accelerator

The PULP project has designed already various accelerators which correspond to the L1-level
integration used in the CONVOLVE project and are called Hardware Processing Engines
(HWPEs)7. The project has released some of the accelerators a set of IPs open-source on
Github8.

CONVOLVE partners are free to re-use these IPs to design and integrated their own
accelerators into a PULP cluster as described in Section 3.1.3.

3.4.1. HWPE Overview

The HWPE are specialized accelerators that work in conjunction with a PULP system to
enhance its performance and energy efficiency for specific tasks.

Unlike other accelerators mentioned in literature, HWPEs do not rely on an external DMA for
input and output or being tied down to one core. Instead, they operate directly on the shared
memory used by other elements, such as a general-purpose PE in a cluster, while their control
is accessed through a peripheral bus or interconnect. Combining HW-based execution on an
HWPE with general-purpose software code is easy as only pointers and configuration
parameters need exchanging between them.

Figure 9 is giving an overview of a typical HWPE accelerator which is split into three domains:
control, streamer, and engine.

FIGURE 9: HWPE OVERVIEW.

7 https://hwpe-doc.readthedocs.io/en/latest/chips.html
8 https://hwpe-doc.readthedocs.io/en/latest/github.html

https://hwpe-doc.readthedocs.io/en/latest/chips.html
https://hwpe-doc.readthedocs.io/en/latest/github.html

Grant Agreement 101070374 Page | 22

The control domain exposes a control plane interface used to program the accelerator.
Typically, a general-purpose core writes a set of pointers and job configuration parameters
over the interface into a register file which are used by a main finite-state-machine (FSM) to
control the streamer and the engine of the accelerator. A set of IPs which can be used by
partners to design the control domain can be found on the GitHub9.

The streamer domain exposes a data plane interface and includes a set of address generators
which are controlled by the main FSM of the control domain. The fetched data is typically
converted into simple data streams which are valid/ready based and are given into the
engine10. More information of the protocol conversion can be found in the documentation11.

The engine domain contains the actual datapath of the accelerator and is controlled by the
main FSM of the control domain. The engine typically also contains a set of local fine-grained
FSMs.

A set of simpler example HWPE accelerators can be found here:
• Basic HWPE12 example with basic streamers - MAC engine with single Multiply-

Accumulate
• Basic HWPE example with HCI streamers - pure data mover13

A set of more complex example HWPE accelerators can be found here:

• Reconfigurable Binary Engine14 - neural accelerator with flexible precision for weights
and activations [33]

• Neural Engine15 (16 input-channels) - neural accelerator with flexible precision for
weights. The accelerator is used in the Gap9 SoC from Greenwaves16

• RedMulE17 (REDuced-precision Matrix MULtiplication Engine) is a 8-bit and 16-bit
floating-point systolic array [34]

In the following, the data plane and control plane interface which can be used for the L1-
accelerator are described (see Figure 10).

9 https://github.com/pulp-platform/hwpe-ctrl/
10 https://hwpe-doc.readthedocs.io/en/latest/protocols.html#hwpe-stream-protocol
11https://hwpe-doc.readthedocs.io/en/latest/protocols.html#exchanging-data-between-
hwpe-mem-and-hwpe-stream

12 https://github.com/pulp-platform/hwpe-mac-engine
13 https://github.com/pulp-platform/hwpe-datamover-example
14 https://github.com/pulp-platform/rbe
15 https://github.com/pulp-platform/ne16
16 https://greenwaves-technologies.com/gap9_processor/
17 https://github.com/pulp-platform/redmule

https://github.com/pulp-platform/hwpe-ctrl/
https://hwpe-doc.readthedocs.io/en/latest/protocols.html#hwpe-stream-protocol
https://hwpe-doc.readthedocs.io/en/latest/protocols.html%23exchanging-data-between-hwpe-mem-and-hwpe-stream
https://hwpe-doc.readthedocs.io/en/latest/protocols.html%23exchanging-data-between-hwpe-mem-and-hwpe-stream
https://github.com/pulp-platform/hwpe-mac-engine
https://github.com/pulp-platform/hwpe-datamover-example
https://github.com/pulp-platform/rbe
https://github.com/pulp-platform/ne16
https://greenwaves-technologies.com/gap9_processor/
https://github.com/pulp-platform/redmule

Grant Agreement 101070374 Page | 23

FIGURE 10: HWPE ABSTRACTION OF THE DATA PLANE AND CONTROL PLANE.

3.4.2. Data Plane

TCDM Interface
L1-Accelerators are connected to external L1/L2 shared memory by means of a simple memory
protocol using a request/grant handshake. The protocol used is called Tightly-Coupled Data
Memory (TCDM) protocol, which is very similar to the OBI18, and HWPE-mem19. It is the same
protocol as the one used by cores and DMAs operating on memories. It only supports individual
transactions (no bursts) and assumes very tight coupling to memories with very low latencies.

TABLE 5: TCDM PROTOCOL.
Signal Width [bits] Direction Description

req 1 Master → Slave Handshake request signal (1=asserted).

gnt 1 Slave → Master Handshake grant signal (1=asserted).

add 32 Master → Slave Word-aligned memory address.

wen 1 Master → Slave Write enable signal (1=read, 0=write).

be 4 Master → Slave Byte enable signal (1=valid byte).

data 32 Master → Slave Data word to be stored.

r_data 32 Slave → Master Loaded data word.

r_valid 1 Slave → Master Response valid (1=asserted).

req 1 Master → Slave Handshake request signal (1=asserted).

gnt 1 Slave → Master Handshake grant signal (1=asserted).

It supports neither multiple outstanding transactions nor bursts, as the accelerators are
assumed to be closely coupled to memories, with single-cycle latencies when there is no
contention. The TCDM protocol is used to connect a master to a slave. Table 5 reports the
signals used by the TCDM protocol.

18 https://github.com/openhwgroup/obi/blob/188c87089975a59c56338949f5c187c1f8841332/OBI-
v1.5.0.pdf
19 https://hwpe-doc.readthedocs.io/en/latest/protocols.html#hwpe-mem

https://github.com/openhwgroup/obi/blob/188c87089975a59c56338949f5c187c1f8841332/OBI-v1.5.0.pdf
https://github.com/openhwgroup/obi/blob/188c87089975a59c56338949f5c187c1f8841332/OBI-v1.5.0.pdf
https://hwpe-doc.readthedocs.io/en/latest/protocols.html#hwpe-mem

Grant Agreement 101070374 Page | 24

The handshake signals req and gnt are used to validate transactions between masters and
slaves. Transactions are subject to the following rules (see Figure 11 and Figure 12):

1. A valid handshake occurs in the cycle when both req and gnt are asserted. This is true
for both write and read transactions.

2. Every transaction is completed with the r_valid signal being asserted for one cycle.
In the case of read requests, the asserted r_valid d indicates that the requested data
is now provided at r_data. For write transactions the asserted r_valid signal
indicates the completion of the write request. In this case r_data contains invalid
data.

3. The assertion of req (transition 0 → 1) cannot depend combinationally on the state of
gnt. On the other hand, the assertion of gnt (transition 0 → 1) can depend
combinationally on the state of req (and typically it does). This rule avoids deadlocks in
ping-pong logic.

FIGURE 11: MULTIPLE TCDM READ REQUESTS.

FIGURE 12: MULTIPLE TCDM WRITE REQUESTS.

Grant Agreement 101070374 Page | 25

HCI-Core Interface
HCI-Core (Heterogeneous Cluster Interconnect – Core) is a protocol designed as a lightweight
extension of TCDM better suited for the needs of accelerators, specifically cluster-coupled
HWPEs. If more bandwidth is required, we recommend using the HCI interface (see Section
3.1.2). The HCI-Core interface supports multiple outstanding transactions and is further
specified in the documentation20. The interface provides signals in addition to the TCDM
signals. Please discuss using these additional signals with ETHZ before accelerator design.

3.4.3. Control Plane

Peripheral Interface
To enable control of the Accelerators, they typically expose a slave port to the peripheral
system interconnect (see Section 3.1.2). The slave port follows an extension of the TCDM
protocol which we can call PERIPH. The PERIPH protocol is the same exposed by most
peripherals in a PULP system and used by the GP cores to communicate with them. Table 6
gives an overview of all PERIPH signals.

The PERIPH protocol is distinguished by the TCDM protocol by the id and r_id side channels.
They are used in load operations issued through a PERIPH interface: the id identifies the
master during the request phase, is buffered by the slave peripherals and accompanies the
response phase as r_id. In this way, multiple masters can distinguish which traffic is related
to themselves.

TABLE 6: PERIPH PROTOCOL.
Signal Width [bits] Direction Description
req 1 Master → Slave Handshake request signal (1=asserted).

gnt 1 Slave → Master Handshake grant signal (1=asserted).

add 32 Master → Slave Word-aligned memory address.

wen 1 Master → Slave Active-low write enable signal (1=read,
0=write).

be 4 Master → Slave Byte enable signal (1=valid byte).

data 32 Master → Slave Data word to be stored.

id ID_WIDTH Master → Slave ID used to identify the master (request)

r_data 32 Slave → Master Loaded data word.
r_valid 1 Slave → Master Valid loaded data word (1=asserted).
r_id ID_WIDTH Slave → Master ID used to identify the master (reply).

20 https://hwpe-doc.readthedocs.io/en/latest/protocols.html#hci-core

https://hwpe-doc.readthedocs.io/en/latest/protocols.html#hci-core

Grant Agreement 101070374 Page | 26

Register Interface
A simple protocol for memory-mapped registers can also be used (see Figure 13 and Figure
14). Register generation is possible with the reggen tool using the version in the GitHub21.

FIGURE 13: REGISTER INTERFACE WRITE TRANSACTION.

FIGURE 14: REGISTER INTERFACE READ TRANSACTION.

3.4.4. Programming Model

To initialize the accelerator, its configuration port is used, passing the required information.
Typically, one PE writes to the memory-mapped control registers. The accelerator is
responsible for managing its own data, fetching and storing it back to the TCDM memory.
Typically, these accelerator types should allow multiple contexts for job configuration to
achieve a performance on full applications and not only on kernels. Additionally, we
recommend the use of a done signal, which can be connected to the event unit and is used to
wake-up the PE once the offloaded job running on the accelerator is finished.

21 https://github.com/pulp-platform/register_interface.

https://github.com/pulp-platform/register_interface

Grant Agreement 101070374 Page | 27

3.5. L2 – Accelerator: Loosely-Coupled Accelerator

An L2 accelerator is loosely coupled to the system, attaching to the global AXI-compatible
interconnect or network.

3.5.1. Merged: Control & Data Plane: AXI

Both for control and data management, the accelerators use AXI4, compatible with the AXI4
specification from ARM22. For integration, using the pulp-platform AXI4 IPs23 is
recommended. The specification describes the protocol fields to be implemented for an AXI4
interface and how they should behave w.r.t. timing, ordering, etc., so we will abstain from
providing further details here. The PULP AXI4 IPs provide a library of compatible
interconnect management IPs that can be used for the design.

An accelerator will have two AXI ports, a single slave port allowing incoming requests for
control, and a single master port allowing outgoing requests for data movement. Please note
that these will have different ID widths for proper interconnect design.

3.5.2. Programming Model

To initialize the accelerator, its configuration port is used, passing the required information.
The accelerator is responsible for managing its own data, fetching and storing it back to a main
memory (e.g. L2). The architecture to handle the data movement is responsibility of the
accelerator designer, but can be accomplished using a dedicated Direct Memory Access (DMA)
engine, such as the iDMA24. Typically, these accelerator types should allow a form of double-
buffering and multiple contexts for job configuration. Additionally, we recommend the use of
a done signal, which can be connected to a system-level event unit and is used to wake-up the
host core once the offloaded job running on the accelerator is finished.

22 https://developer.arm.com/documentation/ihi0022/e/
23 https://github.com/pulp-platform/axi
24 https://github.com/pulp-platform/iDMA

https://developer.arm.com/documentation/ihi0022/e/
https://github.com/pulp-platform/axi
https://github.com/pulp-platform/iDMA

Grant Agreement 101070374 Page | 28

4. Collaboration Tools

All hardware designed for the project is stored in corresponding git repositories, one for
each IP, stored in the Eindhoven gitlab server.

Each IP will provide a Bender.yml file for the design, indicating its dependencies and the
source files required for the design. This file is designed to be used with bender25. A full
description of the format can be found in the ReadMe of bender.

Git and bender will be used to combine the IPs into a full SoC.

25 https://github.com/pulp-platform/bender

https://github.com/pulp-platform/bender

Grant Agreement 101070374 Page | 29

5. Required Models and Views to achieve Goals of WP6

The next tasks of WP6 include the development and use of a compositional performance
analysis model to model energy and latency at the SoC level, including the modelling of the SoC
level memory hierarchy and processing host, as well as integrating the different accelerator
component models of WP2/3. The use of such a model will moreover enable run-time
performance assessment of an application when the platform configuration changes.

In the following the required accelerator models that will be needed from WP2/3 to such that
the accelerators can be evaluated as part of the performance model that will be developed as
part of T6.2 and used in T6.3. Firstly, there is the GVSoC simulator, which can be used for rapid
SW prototyping and performance evaluation. Secondly, there is ZigZag which enables high-
level accelerator design space explorations (DSE).

5.1. GVSoC Simulator

Simulating an entire heterogeneous SoCs which combines general-purpose cores with
application-specific accelerators is rather complex and slow. Overall, this heterogeneity level
requires a complex hardware and a full-fledged software stack to evaluate applications while
exploiting all platform features. For this reason, enabling agile design space exploration
becomes a crucial asset for exploring such heterogeneous SoCs. In this scenario, high-level
simulators play an essential role in breaking the speed and design effort bottlenecks of cycle-
accurate simulators and FPGA prototypes, respectively, while preserving functional and
timing accuracy.

For this reason, the PULP project has developed GVSoC, a highly configurable and timing-
accurate event-driven simulator that combines the efficiency of C++ models with the flexibility
of Python configuration scripts. An overview is shown in Figure 15. GVSoC is fully open-
sourced, with the intent to drive future research in the area of highly parallel and
heterogeneous RISC-V based IoT processors, which aligns with the goals of WP6 in
CONVOLVE.

GVSoC leverages three foundational features:

• Python-based modular configuration of the hardware description
• easy calibration of platform parameters for accurate performance estimation
• high-speed simulation

Overall, GVSoC enables practical functional and performance analysis and design exploration
at the full-platform level (processors, accelerators, memory, peripherals and IOs) with a
speed-up of 2500x with respect to cycle-accurate RTL simulation with cycle count errors
typically below 10% for performance analysis [1].

The python-based modular configuration used to describe the entire platform plugs together
a set of individual C++ models. Figure 15 gives an overview of the individual GVSoC
components. For example, various accelerators can be developed individually and be enabled
or disabled very easily for a system simulation. GVSoC already implements several L1-
integrated accelerators (Section 3.4) and the standard interface to use as a template for new

Grant Agreement 101070374 Page | 30

ones. Adding a new accelerator requires specifying its address space, the name and the
number of ports, and the events that it can raise. Similarly, GVSoC partially supports already
the use of multiple compute clusters (a type of L2-accelerators) [2] as described in Section
3.1.2.

FIGURE 15: OVERVIEW OF GVSOC’S MAIN COMPONENTS [1].

5.1.1. Required Models

GVSoC already supports a few L1-integrated accelerators which serve as an example for the
required model:

• NE1626 – a convolution accelerator which is in the GAP9 product from Greenwaves27
• IMA28– an in-memory-compute accelerator

These accelerators are compiled from the pulp-sdk29 and with the traditional PULP Open
cluster as it includes the low-level register map and HAL needed to run e.g., some kernels on
the IMA accelerator.

For CONVOLVE, each accelerator should deliver a similar event-based C++ model (as those
pointed to above) which functionally behaves the same way as the accelerator and is
calibrated against a cycle-accurate simulation.

26 https://github.com/gvsoc/gvsoc-pulp/tree/pulp_devel/models/pulp/ne16
27 https://greenwaves-technologies.com/gap9_processor/
28 https://github.com/gvsoc/gvsoc-pulp/tree/pulp_devel/models/pulp/ima
29 https://github.com/pulp-platform/pulp-sdk

https://github.com/gvsoc/gvsoc-pulp/tree/pulp_devel/models/pulp/ne16
https://greenwaves-technologies.com/gap9_processor/
https://github.com/gvsoc/gvsoc-pulp/tree/pulp_devel/models/pulp/ima
https://github.com/pulp-platform/pulp-sdk

Grant Agreement 101070374 Page | 31

5.2. ZigZag Framework

Building efficient embedded deep learning (DL) systems requires a tight co-design between
DNN algorithms, hardware, and algorithm-to-hardware scheduling, a.k.a. dataflow or
mapping. Different hardware architectures (single-core or multi-core accelerators) are being
designed, supporting many different scheduling possibilities, for different optimizing targets
(energy, latency, memory footprint). However, owing to the large joint design space, finding an
optimal solution through RTL simulation or physical implementation becomes infeasible. To
tackle this problem, a unified high-level DL accelerator design space exploration (DSE)
framework infrastructure, called ZigZag [35], will be used, and improved in the CONVOLVE
project.
ZigZag30 targets rapid DSE for DNN accelerator platforms supporting a broad set of hardware
architectures and workload scheduling scenarios beyond other existing frameworks. Stream31
is an extension of ZigZag [36] capable of modelling multi-core DNN acceleration employing
fine-grained layer-fused processing.

5.2.1. Required Models

For CONVOLVE, each partner should deliver their accelerator model with the description of
their architecture. For CONVOLVE, each partner should deliver their accelerator model with a
description of their hardware architecture. ZigZag framework will help the partners to evaluate
the scheduling and observe the interaction of their accelerator proposals with the different
workloads. ZigZag gives the CONVOLVE partners the opportunity of optimizing their design
choices driven by the observations of the system-level impact. Next subsections describe the
following inputs required by ZigZag to describe the model:

• Workload: A neural network model defined in ONNX format or ZigZag's own format.
• Hardware Architecture: A high-level HW architecture description.
• Mapping: A file that specifies core allocation, spatial mapping, temporal ordering, and

memory operand link.

Hardware Architecture
In this subsection, we introduce the general concept of how HW accelerators are modelled
within ZigZag and the different well-known accelerators we provide as examples. We start
from the smallest building block defined in ZigZag and work our way up towards an accelerator.

Operational Unit: Accelerating inference of a NN requires execution of multiplications and
summations (accumulations) across multiple intermediate data (activations) using trained
parameters (weights). The operational unit, typically a Multiplier, executes the multiplication
of two data elements, typically an activation and a weight. r_data

The operational unit object has following attributes:

• input_precision: List of input operand (data) precision in number of bits for each
input operand (typically 2 for Multiplier).

• output_precision: The bit precision of the operation’s output.

30 https://github.com/ZigZag-Project/zigzag
31 https://github.com/ZigZag-Project/stream

https://github.com/ZigZag-Project/zigzag
https://github.com/ZigZag-Project/stream

Grant Agreement 101070374 Page | 32

• energy_cost: Energy of executing a single multiplication.
• area: The HW area overhead of a single multiplier.

Operational Array: Inferencing a NN typically requires millions of operations, and an
accelerator typically includes an array of operational units that can execute these operations.
This can speed significantly up the computations, as well as increase energy efficiency which
is covered later. The array has multiple dimensions, each with a size. The importance of these
dimensions is explained in the introduction of the memory hierarchy.
The operational array object has:

• operational_unit: The operational unit from which the array is built.
• dimensions: The dimensions of the array. This should be defined as a python

dictionary, with the keys being the identifier of each dimension of the array (typically
‘D1’, ‘D2, …) and the values being the size of this dimension (i.e., the size of the array
along that dimension).

Memory Instance: In order to store the different activations and weights used for the
computations in the operational array, different memory instances are attached in a
hierarchical fashion. The instances define how big each memory is in terms of capacity and
area overhead, what the cost of writing and reading from these memories is, what it’s
bandwidth is, and how many read/write/read-write ports it includes.
The memory instance object has:

• name: A name for the instance
• size: The memory size in bits.
• r_bw/w_bw: A read and write bandwidth in number of bits per cycle.
• r_cost/w_cost: A read and write energy cost.
• area: Area overhead of the instance.
• r_port/w_port/rw_port: The number of read/write/read-write ports the instance

has available.
• latency: The latency of an access in number of cycles.

Memory Hierarchy: Besides knowing what the specs of each memory instance are, the
memory hierarchy encodes information with respect to the interconnection of the memories
to the operational array, and to the other memory instances. This interconnection is achieved
through multiple calls to the add_memory(), where the first call(s) adds the first level of
memories, which connects to the operational array, and later calls connect to the lower
memory levels. This builds a hierarchy of memories.

To know if the memory should connect to the operational array or another lower memory level,
it needs to know which data will be stored within the memories. To decouple the algorithmic
side from the hardware side, this is achieved through the concept of ‘memory operands’ (as
opposed to ‘algorithmic operands which are typically the I/O activations and weights W’). The
designer can think of the memory operands as virtual operands, which will later be linked to
the actual algorithmic operands in the mapping file through the memory_operand_links
attribute.

Grant Agreement 101070374 Page | 33

Similarly to how the operational unit can be unrolled (forming an operational array), the
memories can also be unrolled, where each memory accompanies either a single operational
unit or all the operational units in one or more dimensions of the operational array. This is
encoded through the served_dimensions attribute, which specifies if a single memory
instance of this memory level serves all operational units in that dimension. This should be a
set of one-hot-encoded tuples.

Lastly, the different read/write/read-write ports a memory instance has, are assigned to
the different data movements possible in the hierarchy. There are four types of data
movements in a hierarchy: from high (fh), to high (th), from low (fl), to low (tl). At the time of
writing, these can be manually linked to one of the read/write/read-write ports through the
following syntax: {port_type}_port_{port_number}, port_type being r, w or rw and
port_number equal to the port number, starting from 1, which allows to allocate multiple ports
of the same type. Alternatively, these are automatically generated as a default if not provided
to the add_memory() call.

Internally, the MemoryHierarchy object extends the NetworkXDiGraph object, so its
methods are available.
The memory hierarchy object includes:

• operational_array: The operational array to which this memory hierarchy will
connect. This is required to correctly infer the interconnection through the operational
array’s dimensions. Through the add_memory() calls it adds a new MemoryLevel to
the graph. This requires for each call a:

• memory_instance: A MemoryInstance object to be added to the hierarchy.
• operands: The virtual memory operands this MemoryLevel stores.
• port_alloc: The directionality of the memory instance’s different ports, as described

above.
• served_dimensions: The different dimensions that this memory level will serve, as

described above.

Core: The operational array and the memory hierarchy together form a core of the accelerator.
The core object includes:

• id: The id of this core.
• operational_array: The operational array of this core.
• memory_hierarchy: The memory hierarchy of this core.

HW Accelerator Model: Multiple cores are combined into the HW Accelerator, which is the
main object modelling the HW behaviour.

The accelerator object includes:

• name: A user-defined name for this accelerator.
• core_set: The set of cores comprised within the accelerator.
• global_buffer: A memory instance shared across cores.

Grant Agreement 101070374 Page | 34

Examples:
We have modeled 5 well-known DNN accelerators in the ZigZag GitHub Repository32 , which are
Meta prototype [37], TPU [38], Edge TPU [39], Ascend [40], Tesla NPU [41], and, for our depth-
first scheduling research. To make a fair and relevant comparison, we normalized all of them
to have 1024 MACs and maximally 2MB global buffer (GB) but kept their spatial unrolling and
local buffer settings, as shown in Table 7 (IDX 1/3/5/7/9). Besides, we constructed a variant of
every normalized architecture (by changing its on-chip memory hierarchy), denoted with ‘DF’ in
the end of the name, as shown in Table 7 (IDX 2/4/6/8/10).

TABLE 7: SETTINGS EXAMPLE FOR ZIGZAG FOR SEVERAL EXISTING HARDWARE ARCHITECTURES. K IS FOR OUTPUT CHANNEL; C IS FOR

INPUT CHANNEL; OX AND OY ARE THE OUTPUT FEATURE MAP’S SPATIAL DIMENSIONS; FX AND FY ARE THE WEIGHT’S SPATIAL

DIMENSIONS.

IDX HW Architecture

Spatial
Unroll.
(1024
MACs)

Register
per MAC
or MAC
group

Local
Buffer

2nd level
LB

Global
Buffer
(max: 2MB)

1 Meta-proto-like K 32
C 2
OX 4
OY 4

W: 1B
O: 2B

W: 64B
I: 32KB -

W: 1MB
I&O: 1MB

2 Meta-proto-like DF
W: 32B
I&O: 64KB -

3 TPU-like
K 32
C 32

W: 128B
O: 1KB - - I&O: 2MB

4 TPU-like DF
W: 64B
O: 1KB

I&O: 64KB -
W: 1MB
I&O: 1MB

5 Edge-TPU-like K 8
C 8
OX 4
OY 4

W: 1B
O: 2B

W: 32KB - I&O: 2MB

6 Edge-TPU-like DF
W: 16KB
I&O: 16KB

-
W: 1MB
I&O: 1MB

7 Ascend-like K 16
C 16
OX 2
OY 2

W: 1B
O: 2B

W: 64B
I: 64KB
O: 256KB

-
W: 1MB
I&O: 1MB

8 Ascend-like DF
W: 64B
I&O: 64KB

I&O:256KB

9 Tesla-NPU-like K 32
OX 8
OY 4

W: 1B
O: 2B

W: 1B
I: 1KB

-
W: 1MB
I&O: 1MB

10 Tesla-NPU-like DF
W: 1B
I: 1KB

W: 64KB;
I&O: 64KB

W: 1MB
I&O: 896KB

Workload
The recommended way of defining an algorithmic workload is through an ONNX model. An
ONNX model can contain multiple operator types, which in the context of ML are often
referred to as layers, some of which are automatically recognised and parsed by ZigZag.
Alternatively, the layers can be manually defined for more customization. Following operators
are supported by ZigZag and will automatically be parsed into LayerNode objects when using
a ONNX model within the framework:

• Conv

• QLinearConv

• MatMul

32 https://github.com/ZigZag-Project/zigzag

https://github.com/ZigZag-Project/zigzag

Grant Agreement 101070374 Page | 35

Manual layer definition: It is also possible to manually define custom workload layers. In that
case there the main.py file should be executed instead of main_onnx.py. Moreover, the
workload file should be provided as input together with the accelerator, thus there is no ONNX
model and mapping file loaded. The mapping information is inserted for each layer alongside
the layer shape definition, identically to how it was defined in the mapping file.

Each layer definition is represented as a dictionary which should have the following attributes:
equation: The operational equation for this layer. The dimensions should be small letters,
whereas the operands are large letters. O should always be used for the output operand; the
input operands can be named freely.

• dimension_relations: The relationship between different dimensions presents in
the equation. This is often used in convolutional layers, where there is a relationship
between the spatial input indices and the spatial output indices through the stride and
with the filter indices through the dilation rate.

• loop_dim_size: The size of the different dimensions presents in the equation.

Dimensions defined (i.e., on the left-hand side) in the dimension_relations are not to
be provided and are inferred automatically.

• operand_precision: The bit precision of the different operands presents in the

equation. O should always be used, which represents the partial output precision.
O_final represents the final output precision.

• operand_source: The layer id the input operands of this layer come from. This is

important to correctly build the NN graph edges.

• constant_operands: The operands of this layer which are constants and do not
depend on prior computations.

• core_allocation: The core that will execute this layer.

• spatial_mapping: The spatial parallelization strategy used for this layer. If none is

provided, the SpatialMappingGeneratorStage should be used within ZigZag’s
execution pipeline.

• memory_operand_links: The link between the virtual memory operands and the

actual algorithmic operands. For more information, read the hardware readme.

Mapping
The mapping defines how the algorithmic operations are mapped onto the computational
hardware resources. The ZigZag framework automates (parts of) this mapping, but some
aspects need to be (at the time of writing) user defined. The mapping input file is required for
running ZigZag in combination with the ONNX interface. When manually defining the
algorithmic layers, the mapping information is encoded within the workload definition.

Grant Agreement 101070374 Page | 36

The mapping file should contain following aspects for every ONNX node that will be mapped
onto the accelerator:

• core_allocation: The accelerator core id onto which this ONNX node is mapped (the
id provided when creating the core in the HW description file).

• spatial_mapping: The spatial parallelization strategy to execute the node with (this

can be automated through the SpatialMappingGeneratorStage).

• memory_operand_links: The memory operand links, which link the memory
operands (defined in the memory hierarchy of the core) to the layer operands (which
are generated in the ONNXModelParserStage and are typically O, I, W for a
convolutional layer). This extra memory mapping is added to allow flexible memory
allocation schemes. A default entry can also be defined. This is useful to have different
ONNX node names, or for customizing the workload for every mapped node. The
default entry is automatically detected under the default key of the mapping
dictionary.

6. Overview of WP6 Work Plan

In this section, an overview of the ongoing and upcoming tasks as well as deliverables of WP
6 are given. An overview of all tasks, deliverables including the expected timelines is given in
Table 8.

6.1. Task 6.2: Performance Analysis and Management of ML Applications on
Modular Architectures

In this task, the partners will work on the modelling infrastructure to model energy and latency
at the SoC level considering the SoC host and overall memory hierarchy, as well as the smooth
integration of the new accelerator models developed by WP2/3 and specified in Section 5.2.
The development of efficient compositional models focuses on enabling both design-time and
run-time (dynamic) flexibility and re-configuration. Furthermore, the compositional models
will enable run-time performance assessment of an application when the platform
configuration changes.

6.2. Task 6.3: Modular Flexibility-Aware DSE Framework for Efficiency and Fault-
Tolerance

In this task, the DSE framework ZigZag will be extended with modelling capabilities for multi-
core compute cluster, multi-accelerator, as well as layout-aware cost modelling. In addition,
the DSE framework will be enhanced to model the memory hierarchy and architecture of the
open-source hardware IPs used to design the SoC template described in this deliverable D6.1.
The goal is that the DSE framework which can derive the optimal combination of accelerators,
together with the best design- and run-time flexibility parameter (ranges), given target
workloads and application constraints. This task builds on the models of T6.2, as well as the
compiler directives of WP5.

Grant Agreement 101070374 Page | 37

6.3. Task 6.2: Rapid Design Instantiation and Validation of Modular and Flexible
Architectures

This task enabled the rapid instantiation and verification of the optimized multi-accelerator
machine learning SoC architectures. This includes the development of the parameterized
(System)Verilog SoC template and the supported interfaces described in this deliverable, as
well as the extension and development of the simulator. Furthermore, the partners will work
on automated integration of the different components, including testbench generation, for
the parametrized SoC architectures. The verification flow orients on the industry needs and
includes tests for functional correctness, timing criticality, security, and fault tolerance into
the methodology. The task will result in a prototype SoC developed with the target
methodology.

TABLE 8: OVERVIEW AND TIMELINE OF WP6.
Working Package 6 Participants 3 6 9 12 15 18 21 24 27 30 33

Compositional architecture
DSE and SoC generation

                       

T6.1 Modular architecture
template definition

ETHZ, TUE, TUD,
KUL, RUB, UMU

                     

T6.2 Performance analysis and
management of ML
Applications on Modular
Architectures

TUE, FMI, KUL,
BOS, NXP, UED,
UMU

                     

T6.3 Modular flexibility-aware
DSE framework for efficiency
and fault-tolerance

KUL, ETHZ, FMI,
BOS

                     

T6.4 Rapid design instantiation
and validation of modular and
flexible Architectures

BOS, ETHZ, KUL,
RUB, UED

                     

D6.1 Modular architecture
template definition

Lead ETHZ                      

D6.2 Description of the gen1
performance analysis
framework and DSE framework

Lead TUE                      

D6.3 Description SoC
architecture, and the rapid
design & prototyping
environment

Lead BOS                      

D6.4 Final integrated
modelling, design exploration
and generation tool flow

Lead KUL                      

Grant Agreement 101070374 Page | 38

7. Conclusion

To summarize, this deliverable D6.1 specified the high-level RISC-V SoC template and
standardized interfaces to enable a modular and easy integration of multiple ML and security
accelerators. The described three integration levels cover various accelerator design styles:
L0 co-processors, L1 tightly coupled accelerators, and the L2 loosely coupled accelerators. In
addition, the deliverable specifies the accelerator models required to consider the individual
accelerators in a compositional simulator based on GVSoC and in the high-level accelerator
design space explorations based on ZigZag.

Overall, this specification deliverable D6.1 lays the foundation to successfully combine the
work of individual CONVOLVE work packages to enable a rapid and modular design flow for
heterogeneous ultra-low-power reliable and secure edge AI devices, including their SW and
compiler infrastructure.

Grant Agreement 101070374 Page | 39

8. References

[1] N. Bruschi, G. Haugou, G. Tagliavini, F. Conti, L. Benini, and D. Rossi, “GVSoC: A
Highly Configurable, Fast and Accurate Full-Platform Simulator for RISC-V based
IoT Processors,” in Proceedings - IEEE International Conference on Computer
Design: VLSI in Computers and Processors, Institute of Electrical and Electronics
Engineers Inc., 2021, pp. 409–416. doi: 10.1109/ICCD53106.2021.00071.

[2] N. Bruschi et al., “Scale up your In-Memory Accelerator: Leveraging Wireless-on-
Chip Communication for AIMC-based CNN Inference,” in Proceeding - IEEE
International Conference on Artificial Intelligence Circuits and Systems, AICAS
2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 170–173.
doi: 10.1109/AICAS54282.2022.9869996.

[3] A. Garofalo et al., “A 1.15 TOPS/W, 16-Cores Parallel Ultra-Low Power Cluster with
2b-to-32b Fully Flexible Bit-Precision and Vector Lockstep Execution Mode,” in
ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference, Proceedings,
Institute of Electrical and Electronics Engineers Inc., Sep. 2021, pp. 267–270.
doi: 10.1109/ESSCIRC53450.2021.9567767.

[4] “STM32L4R5xx STM32L4R7xx STM32L4R9xx.” [Online]. Available: www.st.com
[5] “This is information on a product in full production. STM32U575xx Ultra-low-

power Arm ® Cortex ®-M33 32-bit MCU+TrustZone ® +FPU, 240 DMIPS, up to 2 MB
Flash memory, 786 KB SRAM Datasheet-production data Features Includes ST
state-of-the-art patented technology Ultra-low-power with FlexPowerControl
Core • Arm ® 32-bit Cortex ®-M33 CPU with TrustZone ® , MPU, DSP, and FPU,”
2023. [Online]. Available: www.st.com

[6] J. Yue et al., “7.5 A 65nm 0.39-to-140.3TOPS/W 1-to-12b Unified Neural Network
Processor Using Block-Circulant-Enabled Transpose-Domain Acceleration with
8.1 × Higher TOPS/mm2and 6T HBST-TRAM-Based 2D Data-Reuse Architecture,”
in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), 2019, pp. 138–
140. doi: 10.1109/ISSCC.2019.8662360.

[7] Z. Yuan et al., “A Sparse-Adaptive CNN Processor with Area/Performance
balanced N-Way Set-Associate PE Arrays Assisted by a Collision-Aware
Scheduler; A Sparse-Adaptive CNN Processor with Area/Performance balanced
N-Way Set-Associate PE Arrays Assisted by a Collision-Aware Scheduler,” 2019.

[8] J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H.-J. Yoo, “7.7 LNPU: A 25.3TFLOPS/W
Sparse Deep-Neural-Network Learning Processor with Fine-Grained Mixed
Precision of FP8-FP16,” in 2019 IEEE International Solid- State Circuits
Conference - (ISSCC), 2019, pp. 142–144. doi: 10.1109/ISSCC.2019.8662302.

[9] J. Song et al., “7.1 An 11.5TOPS/W 1024-MAC Butterfly Structure Dual-Core
Sparsity-Aware Neural Processing Unit in 8nm Flagship Mobile SoC,” in 2019 IEEE
International Solid- State Circuits Conference - (ISSCC), 2019, pp. 130–132. doi:
10.1109/ISSCC.2019.8662476.

[10] S. Ryu et al., “A 44.1TOPS/W Precision-Scalable Accelerator for Quantized Neural
Networks in 28nm CMOS,” in 2020 IEEE Custom Integrated Circuits Conference
(CICC), 2020, pp. 1–4. doi: 10.1109/CICC48029.2020.9075872.

[11] Z. Yuan et al., “14.2 A 65nm 24.7µJ/Frame 12.3mW Activation-Similarity-Aware
Convolutional Neural Network Video Processor Using Hybrid Precision, Inter-
Frame Data Reuse and Mixed-Bit-Width Difference-Frame Data Codec,” in 2020

Grant Agreement 101070374 Page | 40

IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 232–234.
doi: 10.1109/ISSCC19947.2020.9063155.

[12] Z. Li et al., “An 879GOPS 243mW 80fps VGA Fully Visual CNN-SLAM Processor for
Wide-Range Autonomous Exploration,” in 2019 IEEE International Solid- State
Circuits Conference - (ISSCC), 2019, pp. 134–136. doi:
10.1109/ISSCC.2019.8662397.

[13] Y.-C. Lo et al., “Physically Tightly Coupled, Logically Loosely Coupled, Near-
Memory BNN Accelerator (PTLL-BNN),” in ESSCIRC 2019 - IEEE 45th European
Solid State Circuits Conference (ESSCIRC), 2019, pp. 241–244. doi:
10.1109/ESSCIRC.2019.8902909.

[14] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU: An Energy-
Efficient Deep Neural Network Accelerator With Fully Variable Weight Bit
Precision,” IEEE J Solid-State Circuits, vol. 54, no. 1, pp. 173–185, 2019, doi:
10.1109/JSSC.2018.2865489.

[15] B. Moons, D. Bankman, L. Yang, B. Murmann, and M. Verhelst, “BinarEye: An
always-on energy-accuracy-scalable binary CNN processor with all memory on
chip in 28nm CMOS,” in 2018 IEEE Custom Integrated Circuits Conference (CICC),
2018, pp. 1–4. doi: 10.1109/CICC.2018.8357071.

[16] I. A. Papistas et al., “A 22 nm, 1540 TOP/s/W, 12.1 TOP/s/mm2 in-Memory Analog
Matrix-Vector-Multiplier for DNN Acceleration,” in 2021 IEEE Custom Integrated
Circuits Conference (CICC), 2021, pp. 1–2. doi: 10.1109/CICC51472.2021.9431575.

[17] H. Jia et al., “15.1 A Programmable Neural-Network Inference Accelerator Based
on Scalable In-Memory Computing,” in 2021 IEEE International Solid- State
Circuits Conference (ISSCC), 2021, pp. 236–238. doi:
10.1109/ISSCC42613.2021.9365788.

[18] P.-C. Wu et al., “A 28nm 1Mb Time-Domain Computing-in-Memory 6T-SRAM
Macro with a 6.6ns Latency, 1241GOPS and 37.01TOPS/W for 8b-MAC Operations
for Edge-AI Devices,” in 2022 IEEE International Solid- State Circuits Conference
(ISSCC), 2022, pp. 1–3. doi: 10.1109/ISSCC42614.2022.9731681.

[19] J. Yue et al., “15.2 A 2.75-to-75.9TOPS/W Computing-in-Memory NN Processor
Supporting Set-Associate Block-Wise Zero Skipping and Ping-Pong CIM with
Simultaneous Computation and Weight Updating,” in 2021 IEEE International
Solid- State Circuits Conference (ISSCC), 2021, pp. 238–240. doi:
10.1109/ISSCC42613.2021.9365958.

[20] J. Yue et al., “14.3 A 65nm Computing-in-Memory-Based CNN Processor with 2.9-
to-35.8TOPS/W System Energy Efficiency Using Dynamic-Sparsity
Performance-Scaling Architecture and Energy-Efficient Inter/Intra-Macro Data
Reuse,” in 2020 IEEE International Solid- State Circuits Conference - (ISSCC),
2020, pp. 234–236. doi: 10.1109/ISSCC19947.2020.9062958.

[21] Q. Liu et al., “33.2 A Fully Integrated Analog ReRAM Based 78.4TOPS/W Compute-
In-Memory Chip with Fully Parallel MAC Computing,” in 2020 IEEE International
Solid- State Circuits Conference - (ISSCC), 2020, pp. 500–502. doi:
10.1109/ISSCC19947.2020.9062953.

[22] Z. Chen, X. Chen, and J. Gu, “15.3 A 65nm 3T Dynamic Analog RAM-Based
Computing-in-Memory Macro and CNN Accelerator with Retention
Enhancement, Adaptive Analog Sparsity and 44TOPS/W System Energy
Efficiency,” in 2021 IEEE International Solid- State Circuits Conference (ISSCC),
2021, pp. 240–242. doi: 10.1109/ISSCC42613.2021.9366045.

Grant Agreement 101070374 Page | 41

[23] E. Flamand et al., “GAP-8: A RISC-V SoC for AI at the Edge of the IoT,” in 29th IEEE
International Conference on Application-specific Systems, Architectures and
Processors, ASAP 2018, Milano, Italy, July 10-12, 2018, IEEE Computer Society,
2018, pp. 1–4. doi: 10.1109/ASAP.2018.8445101.

[24] GreenWaves, “GAPuino.”
[25] Syntiant, “NDP120.”
[26] D. Rossi et al., “Vega: A Ten-Core SoC for IoT Endnodes with DNN Acceleration

and Cognitive Wake-Up from MRAM-Based State-Retentive Sleep Mode,” IEEE J
Solid-State Circuits, vol. 57, no. 1, pp. 127–139, Jan. 2022, doi:
10.1109/JSSC.2021.3114881.

[27] I. Miro-Panades et al., “SamurAI: A 1.7MOPS-36GOPS Adaptive Versatile IoT Node
with 15,000× Peak-to-Idle Power Reduction, 207ns Wake-Up Time and
1.3TOPS/W ML Efficiency,” in 2020 IEEE Symposium on VLSI Circuits, 2020, pp. 1–
2. doi: 10.1109/VLSICircuits18222.2020.9163000.

[28] M. Molendijk, F. de Putter, M. Gomony, P. Jääskeläinen, and H. Corporaal,
“BrainTTA: A 35 fJ/op Compiler Programmable Mixed-Precision Transport-
Triggered NN SoC,” Nov. 2022, [Online]. Available:
http://arxiv.org/abs/2211.11331

[29] M. Scherer, A. Di Mauro, G. Rutishauser, T. Fischer, and L. Benini, “A 1036
TOp/s/W, 12.2 mW, 2.72 μJ/Inference All Digital TNN Accelerator in 22 nm FDX
Technology for TinyML Applications,” in 25th IEEE Symposium on Low-Power and
High-Speed Chips and Systems, COOL Chips 2022 - Proceedings, Institute of
Electrical and Electronics Engineers Inc., 2022. doi:
10.1109/COOLCHIPS54332.2022.9772668.

[30] V. Jain, S. Giraldo, J. De Roose, L. Mei, B. Boons, and M. Verhelst, “TinyVers: A
Tiny Versatile System-on-Chip With State-Retentive eMRAM for ML Inference at
the Extreme Edge,” IEEE J Solid-State Circuits, pp. 1–12, Jan. 2023, doi:
10.1109/jssc.2023.3236566.

[31] P. Houshmand et al., “DIANA: An End-to-End Hybrid DIgital and ANAlog Neural
Network SoC for the Edge,” IEEE J Solid-State Circuits, vol. 58, no. 1, pp. 203–215,
Jan. 2023, doi: 10.1109/JSSC.2022.3214064.

[32] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware accelerators,”
Commun ACM, vol. 63, no. 7, pp. 48–57, Jun. 2020, doi: 10.1145/3361682.

[33] F. Conti et al., “22.1 A 12.4TOPS/W @ 136GOPS AI-IoT System-on-Chip with 16
RISC-V, 2-to-8b Precision-Scalable DNN Acceleration and 30%-Boost Adaptive
Body Biasing,” in 2023 IEEE International Solid- State Circuits Conference (ISSCC),
IEEE, Feb. 2023, pp. 21–23. doi: 10.1109/ISSCC42615.2023.10067643.

[34] Y. Tortorella, L. Bertaccini, D. Rossi, L. Benini, and F. Conti, “RedMulE: A
Compact FP16 Matrix-Multiplication Accelerator for Adaptive Deep Learning on
RISC-V-Based Ultra-Low-Power SoCs,” in Proceedings of the 2022 Conference &
Exhibition on Design, Automation & Test in Europe, in DATE ’22. Leuven, BEL:
European Design and Automation Association, 2022, pp. 1099–1102.

[35] L. Mei, P. Houshmand, V. Jain, S. Giraldo, and M. Verhelst, “ZigZag: Enlarging
Joint Architecture-Mapping Design Space Exploration for DNN Accelerators,”
IEEE Transactions on Computers, vol. 70, no. 8, pp. 1160–1174, 2021, doi:
10.1109/TC.2021.3059962.

[36] A. Symons, L. Mei, S. Colleman, P. Houshmand, S. Karl, and M. Verhelst, “Towards
Heterogeneous Multi-core Accelerators Exploiting Fine-grained Scheduling of

Grant Agreement 101070374 Page | 42

Layer-Fused Deep Neural Networks,” Dec. 2022, [Online]. Available:
http://arxiv.org/abs/2212.10612

[37] H. E. Sumbul et al., “System-Level Design and Integration of a Prototype AR/VR
Hardware Featuring a Custom Low-Power DNN Accelerator Chip in 7nm
Technology for Codec Avatars,” in Proceedings of the Custom Integrated Circuits
Conference, Institute of Electrical and Electronics Engineers Inc., 2022. doi:
10.1109/CICC53496.2022.9772810.

[38] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor processing
unit,” in Proceedings - International Symposium on Computer Architecture,
Institute of Electrical and Electronics Engineers Inc., Jun. 2017, pp. 1–12. doi:
10.1145/3079856.3080246.

[39] K. Seshadri, B. Akin, J. Laudon, R. Narayanaswami, and A. Yazdanbakhsh, “An
Evaluation of Edge TPU Accelerators for Convolutional Neural Networks,” in
Proceedings - 2022 IEEE International Symposium on Workload Characterization,
IISWC 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 79–
91. doi: 10.1109/IISWC55918.2022.00017.

[40] H. Liao et al., “Ascend: A Scalable and Unified Architecture for Ubiquitous Deep
Neural Network Computing : stry Track Paper,” in Proceedings - International
Symposium on High-Performance Computer Architecture, IEEE Computer
Society, Feb. 2021, pp. 789–801. doi: 10.1109/HPCA51647.2021.00071.

[41] E. Talpes et al., “Compute solution for tesla’s full self-driving computer,” IEEE
Micro, vol. 40, no. 2, pp. 25–35, Mar. 2020, doi: 10.1109/MM.2020.2975764.

	Table of Contents
	Deliverable Summary
	1. Objectives
	1.1. WP6 Objectives
	1.1.1. Deliverable D6.1 Objectives

	1.2. WP6 Contribution to CONVOLVE’s Objective

	2. State of the Art and Related Work
	2.1. RISC-V
	2.2. PULP Platform
	2.3. Heterogeneous System-on-Chips (SoCs)
	Heterogeneous Chips from CONVOLVE Partners:
	Insights and Trends

	3. Definition of high-level SoC Template and Accelerator Interface
	3.1. SoC Template Overview
	3.1.1. Support Infrastructure / Host Domain
	3.1.2. Compute Cluster
	3.1.3. Accelerator Integration Levels

	3.2. General Specifications for all Accelerators
	3.2.1. General
	3.2.2. Clock & Reset

	3.3. L0 – Accelerator: RISC-V Co-processor
	3.3.1. Control and Data plane: Core-V-X
	3.3.2. Programming Model

	3.4. L1 – Accelerator: Tightly-Coupled Accelerator
	3.4.1. HWPE Overview
	3.4.2. Data Plane
	TCDM Interface
	HCI-Core Interface

	3.4.3. Control Plane
	Peripheral Interface
	Register Interface

	3.4.4. Programming Model

	3.5. L2 – Accelerator: Loosely-Coupled Accelerator
	3.5.1. Merged: Control & Data Plane: AXI
	3.5.2. Programming Model

	4. Collaboration Tools
	5. Required Models and Views to achieve Goals of WP6
	5.1. GVSoC Simulator
	5.1.1. Required Models

	5.2. ZigZag Framework
	5.2.1. Required Models
	Hardware Architecture
	Workload
	Mapping

	6. Overview of WP6 Work Plan
	6.1. Task 6.2: Performance Analysis and Management of ML Applications on Modular Architectures
	6.2. Task 6.3: Modular Flexibility-Aware DSE Framework for Efficiency and Fault-Tolerance
	6.3. Task 6.2: Rapid Design Instantiation and Validation of Modular and Flexible Architectures

	7. Conclusion
	8. References

