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Deliverable Summary 
 
This document describes and defines high level SoC architecture and the interfaces for 
accelerators. 

1. Objectives 

This document “D6.1 Modular Architecture Template Definition” is a deliverable of the Work 
package No.6 “Compositional architecture DSE and SoC generation”, task T6.1 “Modular 
architecture template definition” under the task lead of ETHZ and sets out the modular 
architecture template definition and defines the performance models required to design 
modelling and design space exploration frameworks. 

1.1. WP6 Objectives 

WP6 deals with automated compositional system architecture design space exploration (DSE) 
and system-on-chip (SoC) generation. This is done by providing a modular architecture 
template consisting of a RISC-V host with one or multiple machine learning (ML) and security 
accelerators. 

The objectives of WP6 are defined as follows: 

1) Provide a secure and modular RISC-V based SoC architecture template that eases the 
integration of multiple accelerators, managing control, synchronization, data 
exchange and run-time reconfiguration. 

2) Create a SoC-level performance modelling framework for running ML applications on 
the targeted modular runtime configurable architectures, integrating the component 
models coming out of WP2. 

3) Develop a rapid Design Space Exploration (DSE) framework to cycle quickly over ULP 
SoC and accelerator constellations, finding the optimal balance between design-time 
and run-time flexibility. 

4) Realize an automated design time instantiation flow for optimal and run-time flexible 
SoC generation. 

1.1.1. Deliverable D6.1 Objectives 

The first deliverable D6.1 of WP6 focuses on specifying the modular SoC architecture template 
and defines a high-level SoC architecture and the interfaces for the accelerators designed in 
WP2/3. 

1.2. WP6 Contribution to CONVOLVE’s Objective 

WP6 focuses on the modular SoC design and rapid deployment which makes the work package 
one of the contributors to achieve CONVOLVE’s target to reduce design time of edge AI 
hardware systems by 10x by focusing on the faster design time of the SoC architecture and 
providing a design space exploration tool for rapid software-hardware co-design explorations. 
At the same time, WP6 is crucial to bring together all developed accelerators which are needed 
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to achieve CONVOLVE’s goal to achieve 100x energy efficiency improvement by providing an 
SoC template with standard interfaces to a set of ultra-low-power ML and security 
acceleration blocks which exploit novel architectures, microarchitectures, circuits and 
devices. 

To achieve these goals, it is necessary to have customizable hardware acceleration blocks that 
can be parameterized during both design and run time using a standard interface. These 
blocks should allow for various configurations based on diverse application needs, including 
adjustments in supply voltage, clock frequency, data representation accuracy levels, 
parallelization degrees and dimensionality precision values. WP6 focuses on providing a 
modular and scalable SoC with such standardized interfaces such that the design acceleration 
blocks can be plugged easily to reduce the overall design time. 

In addition to the RTL design itself, performance models and simulators must also be 
modifiable to enable fast exploration of the design-space without sacrificing compositional 
flexibility. WP6 focuses also on automated design-space exploration (DSE) and simulators 
using performance models of the hardware building blocks. 
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2. State of the Art and Related Work 

This chapter gives a background of the projects which are used to specify and design the high-
level SoC template. The template makes use of open-source RISC-V-based IPs from the PULP 
Platform project which is introduced in the following. Additionally, we give an overview of the 
state-of-the-art of heterogeneous SoC where general purpose compute cores are combined 
with highly specialized accelerators. 
 

2.1. RISC-V 

RISC-V1 is an open-source instruction set architecture (ISA) that is gaining significant 
popularity in the embedded systems community. It is a RISC (Reduced Instruction Set 
Computing) architecture that has a simple, elegant design and is highly configurable, making 
it ideal for a wide range of applications. 

One of the key advantages of RISC-V is its open-source nature, which allows anyone to 
contribute to the design and development of the ISA. This means that RISC-V processors can 
be customized with ISA extensions and optimized for specific applications, making them more 
efficient and cost-effective. Additionally, the open-source nature of RISC-V promotes 
innovation and collaboration among developers, which can lead to faster and more efficient 
development of new technologies. 

RISC-V is designed to be vendor-neutral, which means that it can be implemented by any 
processor manufacturer without the need to pay royalties or license fees. This makes RISC-V 
an attractive option for companies that want to avoid the high licensing fees associated with 
proprietary ISAs. 

RISC-V is also designed with modularity and extensibility in mind. The ISA is divided into 
standard modules which support a specific set of features such as atomic, single and double 
precision floating-point operation, which can be combined to create custom configurations. 
Overall, RISC-V's modular and extensible design enables a wide architectural and 
microarchitectural freedom such as VLIW (Very Long Instruction Word) or vector 
architectures. For example, RISC-V also specifies the RISC-V Vector Extension (RVV) which 
can be used to accelerate a wide range of HPC workloads, such as matrix multiplication, signal 
processing, and image processing. The RVV is highly configurable and can be customized to 
suit specific application needs. In addition, it has reserved encoding space for custom 
extensions. The deliberate design of the modular construct aims to facilitate easy 
extensibility, allowing developers to customize the inclusion or exclusion of features based on 
their specific requirements. This makes RISC-V processors highly adaptable and suitable for 
various application needs. All these properties of RISC-V make it the ideal candidate to design 
open-source, re-usable SoC architectures. The CONVOLVE initiative aims to achieve this 
objective by leveraging these properties. 

 
1 https://riscv.org/ 

https://riscv.org/
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2.2. PULP Platform 

The PULP (Parallel Ultra Low Power) Project2, a collaboration between ETH Zurich and 
University of Bologna, aims to produce open-source hardware and software based on RISC-V 
architecture that is scalable and energy efficient. The project has created multiple open-
source RISC-V processor cores, peripherals, and other intellectual properties required for 
developing comprehensive System-on-Chips (SoCs). As part of the Convolve scheme, diverse 
collaborators will utilize several PULP IPs in constructing an innovative heterogeneous SoC 
featuring novel specialized accelerators. 

The open-source project currently provides numerous relevant hardware and software 
elements, utilizing the open-source instruction set architecture (ISA) RISC-V extensively. The 
collection of intellectual properties includes several types of RISC-V cores ranging from those 
that are fully Linux-compatible to low-power microcontroller cores. As part of their research 
initiatives, they have integrated various extensions into the RISC-V ISA, such as XpulpV1, 
XpulpV2, and even ones tailored for neural networks called XpulpNN to decrease overall 
program cycle count while improving energy efficiency. These extended instructions 
comprise features like hardware loops, post-increment loads and stores as well as packed-
SIMD dot-product operations amongst others. Their custom LLVM and GCC compilers support 
these extensions through built-in functions and partial automatic optimization processes. 

PULP also has various open-source simulators to aid in developing software on these 
platforms. The C++-based GVSoC simulator [1], [2] supports running semi-cycle accurate 
simulations (cycle-count up until 90% accurate) of PULP-based systems at a much faster rate 
than typical RTL-level simulations. The (non-cycle-accurate but instruction-accurate) Rust-
based Banshee simulator (publication) was developed to make quick software verification 
possible for scaled-up manycore systems. 

For the CONVOLVE project, we make use of the extensive infrastructure developed within the 
PULP project and extend them with further IPs (e.g., a scalable interconnect). 

 
 

  

 
2 https://pulp-platform.org/ 

https://pulp-platform.org/
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2.3. Heterogeneous System-on-Chips (SoCs) 

Many recent industrial and research systems on chips for ML inference targeted towards 
(extreme) edge devices exist in the literature. In this survey, the performance and power 
information of the chips is gathered and plotted to evaluate and compare the existing state-
of-the-art. The herein surveyed inference platforms are limited to the constraints imposed by 
energy-constrained devices on power (≤100 mW) and a circuit area smaller than 20mm2. This 
review also limits to recent chips presented in and after 2019. The platforms are divided into 
four categories and shown in Table 1: 

TABLE 1: SURVEYED HARDWARE PLATFORMS. 

Platform Type Surveyed Hardware 
General Purpose [3]–[5] 
Digital Accelerators [6]–[14] 
Mixed Precision and In-Memory Computing (IMC) [15]–[22] 
Heterogeneous Multi-Core SoCs [23]–[31] 

 
General-purpose systems: These are commercial and research chips based on general-
purpose CPU architecture and consist of more traditional cores like RISC-V and ARM with no 
specialized accelerators for AI. Some CPU cores are extended to support quantized matrix 
computations standard in ML workloads. Such systems have been traditionally used in IoT 
devices as they are flexible and easily programmable. Several commercial vendors provide 
microcontroller units used for ML in IoT applications. Specifically, all the boards that reported 
their performance for the MLPerf benchmarks have been included in this survey. 
 
Digital accelerators: Specialized accelerators have been used extensively for ML workloads as 
they provide high performance and energy efficiency. This category consists of hardware 
blocks designed to accelerate a few ML layers efficiently, with extra support for precision 
scalability, sparsity, etc. They are based on the typical domain-specific hardware accelerator 
architecture [32] with decoupled computational units and memory. 
 
Mixed precision and In-Memory Computing (IMC): The high data communication cost between 
the memory and cores is a significant bottleneck with the traditional decoupled compute and 
memory architectures. In most ML digital accelerators, the memory accesses energy 
dominates the overall consumption of the system. This has led to the design of new 
architectures based on near-memory computing and, more recently, IMC. The idea behind 
IMCs is to compute inside the memory bit cells, which avoids any data movement during the 
compute cycles. IMC is comparatively much more energy efficient and has gained a lot of 
interest in recent years. Two flavors of IMC, analog and digital IMC, have been proposed. Analog 
IMC provides very high energy efficiency but suffers from constraints in scaling to higher 
precision, lack of dataflow flexibility, and is prone to accuracy degradation due to noise. These 
constraints have led to the design of digital IMCs, which are memory blocks tightly integrated 
with digital MAC computation instead of analog. 
 
Heterogeneous multi-core System-on-Chips: Heterogeneous systems are complete 
standalone system-on-chips that also provide several interfaces to connect to external world. 
They typically consist of a heterogeneous combination of accelerators and general-purpose 
cores. The trend of heterogeneous multi-core is driven by the premise that a single 
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accelerator does not scale well and cannot provide flexibility and efficiency for mapping 
evolving ML models. Therefore, several energy-efficient simple cores can be connected in a 
system, and all network layers can be mapped on the most efficient core for the given layer. 
Several SotA heterogeneous SoCs from the convolve partners are included in the plot below. 
These include BrainTTA, DIANA, Kraken, TinyVers, and Vega. 
 
 

 
FIGURE 1: STATE-OF-THE-ART (SOTA) CHIP DESIGNS FOR EXTREME-EDGE COMPUTING. 

 
 

Heterogeneous Chips from CONVOLVE Partners: 
BrainTTA [28] is able to efficiently map various typical AI workloads, because of its inherent 
flexible datapath from the Transport-Triggered Architecture (TTA). The SoC consists of a 
RISC-V processor and a TTA-based accelerator. The accelerator is fully programmable and is 
supported by a C-compiler, which greatly simplifies mapping various AI (and other) workloads. 
BrainTTA, fabricated in 22nm FDX, has a peak energy efficiency of 29/15/2 TOPS/W (binary, 
ternary, and 8-bit precision) and a throughput of 614/307/77 GOPS. 

Kraken, SoC with SNN and ANN accelerators: Kraken [29] is an example for an ultra-low-power 
heterogeneous SoC fabricated in 22 nm and combines a 32-bit RISC-V host core, 1 MiB of 
scratchpad L2 SRAM memory, and an autonomous I/O subsystem with three programmable, 
power-gateable accelerators: (1) A 1.8 TOp/s/W parallel general-purpose compute cluster with 
8 RISC-V cores sharing 128 KiB of L1 scratchpad memory. The RISC-V cores support hardware 
loops, SIMD sub-byte dot-product integer operations with mixed-precision capabilities, MAC 
with concurrent data load (MAC-LD), and floating-point capabilities for energy-efficient digital 
signal processing. (2) 1.1 TSyOp/s/W accelerator called Sparse Neural Engine (SNE) targets 
spiking convolutional layers with 4-bit 3×3 filter and 8-bit leaky-integrate and fire (LIF) neuron 
states. (3) Completely Unrolled Ternary Inference Engine (CUTIE) is a 1036 TOp/s/W Ternary 
Neural Network (TNN) accelerator. 
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TinyVers - embedding MRAM: TinyVers [30] integrates a highly flexible-precision scalable 
digital accelerator, with a RISC-V core, a power management unit and an eMRAM, to provide a 
complete standalone edge-AI solution. The accelerator supports diverse AI layer types from 
Deep neural networks (NNs) (CNN, FC, TCN, GAN, AE) to traditional ML models like SVM at 
INT2/4/8 precisions. Fabricated in 22nm FDX, it provides 0.8-17 TOPS/W with power 
consumption ranging from 1.7 μW in deep sleep to sub-mW when running real AI workloads. 

DIANA - mixed-signal, mixed-precision: DIANA [31] extends the idea of heterogeneity by 
combining an ULP analog in-memory core (AIMC) with a precision scalable digital NN 
accelerator, an optimized shared-memory subsystem, and a RISC-V host processor to achieve 
SotA end-to-end inference at the edge. The SoC achieves peak energy efficiencies of 600 
TOPS/W (7bit I, ternary W, 6bit O) for the AIMC and 14 TOPS/W (8bit I/W/O) for the digital 
accelerator. When end-to-end ResNet20/CIFAR-10 and ResNet18/ImageNet classification 
workloads are mapped on the chip, 7 TOPS/W and 5.5 TOPS/W efficiencies are reported at 
system level respectively. 

Insights and Trends 
Based on the survey of SotA ML processors for the (extreme) edge, qualitative and quantitative 
analysis of the different key metrics, several insights and trends for future design can be 
extracted. The remaining section discusses these in detail. 

Accelerator Dataflow: As data movement remains the primary bottleneck in ML workloads, 
finding the most optimal dataflow remains the biggest challenge. The selection of dataflow 
also dictates the efficient support of different ML layers on these hardware accelerators. A 
single dataflow cannot efficiently support the different types of layers; therefore, 
reconfigurable architectures such as DIANA and TinyVers that support multiple dataflows 
should be the ideal choice. However, careful trade-off analysis should be undertaken for 
reconfigurability vs. hardware overhead and power consumption. This requires a design space 
exploration for the co-design of hardware and software. 

Arithmetic Precision: From the several performance plots, a strong correlation between 
precision and energy or power consumption can be observed. Therefore, finding the most 
optimal precision and training the models with a quantization-aware methodology to achieve 
good accuracy metrics remains a primary target. Support for variable precision computation 
can be beneficial to provide flexibility to support different workloads. Moreover, depending on 
the models, hybrid quantization, i.e., different precision of weights and activation might be 
more efficient; however, it can increase the complexity of the hardware. 

Sparsity: Model compression through pruning can considerably improve performance. 
However, random sparse computation can be complex to handle in hardware but has the 
advantage of being relatively more accurate than structured sparsity. Therefore, a careful 
trade-off analysis between the accuracy of model deployment and hardware complexity 
should be undertaken. Structured sparsity can help with a known sparsity pattern making the 
hardware design easier. Though the accuracy of the models with structured sparsity needs to 
be evaluated, they can benefit from sparsity-aware training. Some surveyed platforms have 
used sparsity (unstructured and structured), showing improved performance and should be a 
future trend for hardware and software design. 
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Circuit Area: On-chip memory is the main driver for the overall chip area in most platforms. 
Large on-chip memory helps keep the model data local to the chip with reduced access (time 
and number) to external memory. This can decrease the system’s overall energy consumption 
if the entire memory space is utilized. However, in most cases, large memory reduces the area 
efficiency as more storage does not always correspond to high bandwidth data movement, 
meaning that the throughput remains the same but the area increases. Analog and digital IMC 
alleviate this issue by having a coupled access and compute design, shown in several 
performance and area efficiency plots. For all hardware platforms, memory hierarchy design 
should be evaluated through an exploration framework to find an optimal design choice with 
maximum data reuse. Future designs could integrate efficient IMCs into SoCs to find a middle 
ground. 

Analog vs. Digital IMC: Analog IMCs are significantly more area and energy efficient but suffer 
from analog noise and cannot scale to higher precision which affects the accuracy of models. 
Digital IMCs are more scalable and easier to train models for; thus, many recent works have 
focussed on these. 

Heterogeneity: Heterogeneous SoCs tend to be more flexible and can cater to evolving ML 
applications. Efficient analog/digital accelerators and IMCs can be integrated into 
heterogeneous SoCs (e.g., DIANA) to take advantage of both, bringing flexibility with a 
moderate reduction in energy efficiency. Recent works have shown this is a major trend in 
research and academia. Multiple chips which combine ML-optimized RISC-V ISA extension 
cores with multiple specialized accelerators have been introduced. Thus, this trend is here to 
stay, and future designs should take advantage of this. However, challenges like compilers 
which can schedule workloads efficiently on the different resources, remain a bottleneck. Fast 
design exploration and full-stack hardware-software generation methodologies should be 
adopted to address these challenges of heterogeneous systems. 

Power Management: Finally, power management brings the required system-level flexibility to 
save considerable power when mapping duty-cycled workloads. Power management should 
also be used to fully exploit dark silicon in heterogeneous systems where parts of the chip are 
not utilized for specific computational workloads. Future IoT devices must combine 
heterogeneous systems with power management to build genuinely efficient and flexible 
systems.  
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3. Definition of high-level SoC Template and Accelerator Interface  

In this chapter the high-level SoC template and the different accelerator integration levels are 
described. For each integration level we define the supported interfaces for the control and 
for the data plane. The described SoC template is inspired by the open-source IP landscape of 
the PULP Platform project [26,29]. CONVOLVE partners are free to re-use the open-source 
IPs3 to design their accelerators. 

3.1. SoC Template Overview 

Figure 2 gives a high-level overview of the SoC template. The SoC template is split into a 
support infrastructure domain which comes with a RISC-V host, a main memory, and some 
peripherals. This domain is attached over a high-speed on-chip interconnect (e.g., network-
on-chip (NoC), AMBA AXI) to a set of L2-accelerators. These L2-accelerators can be the same 
type of accelerator or a combination of different accelerators. An example L2-accelerator is 
provided with the compute cluster (shown on the right side of Figure 2). Inside this Accelerator 
a set of general-purpose RISC-V cores can be extended with L0-accelerators or can share the 
tightly coupled data memory (TCDM) with a set of L1-accelerators. Each L2 and L1 accelerator 
run at the same clock frequency as the SoC and/or cluster, but can be independently clock 
gated. 

To summarize, we define three different levels of accelerator integration in the SoC template: 

• L0: RISC-V co-processor 
• L1: Tightly coupled accelerator 
• L2: Loosely coupled AXI- accelerator 

 
FIGURE 2: OVERVIEW OF THE HIGH-LEVEL SOC TEMPLATE WITH THE THREE MAIN ACCELERATOR TYPES. 

 

 
3 https://github.com/pulp-platform/ 
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3.1.1. Support Infrastructure / Host Domain 

The support infrastructure is the main frame for the SoC, providing general infrastructure for 
the functionality of and interfacing with the SoC. As shown on the left side of Figure 2, the 
support infrastructure includes a RISC-V support core, L2 main memory, peripherals, and an 
external memory controller. 

The general-purpose RISC-V support core, also termed fabric controller (FC) or host 
processor, provides the necessary functionality to control the overall system. The core, in 
previous PULP systems based on a lightweight RISC-V core, acts as the primary controller for 
the system’s peripherals and is responsible for managing the memory of the system, both 
external and the on-chip L2 main memory. As the main control core of the system, it helps 
coordinate the data processing operations between the various components of the system, 
namely the computing cluster, and accelerators. 

The L2 memory offers a scratchpad memory for the system. It is designed to contain the 
program code for the host processor and limited data to be transferred to the cluster or 
accelerators. Designed to be fast, it offers limited space to temporarily buffer data between 
large external memory and data within the cluster or accelerators. 

To interface with the outside world, the support infrastructure also contains peripherals, such 
as a JTAG for debugging. Other peripherals, such as SPI, UART, and GPIOs, are also available 
as memory-mapped devices. These peripherals allow the SoC to communicate with external 
sensors and connected devices. 

Finally, an external memory controller is included, allowing the system to interface with a large, 
off-chip memory. This external memory controller handles all interfacing with the external 
device and offers on-chip devices access to the data. 

 

 
FIGURE 3: BASE COMPUTE CLUSTER. 
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3.1.2. Compute Cluster 

A high-level overview of the compute cluster is shown on the right of Figure 2. The cluster 
consists of a parameterizable number P of general-purpose processing elements (PE) based 
on RISC-V cores and is connected to the host domain over a AXI4 port (shared for control and 
data plane, see Section 3.5.1). The base cluster can, therefore, be understood as a special type 
of L2 accelerator and is shown in Figure 3. It can be further extended with L0 or L1 accelerators 
on multiple levels as will be explained in Section 3.1.3. The compute cluster has a hierarchical 
instruction cache for the PEs that consists of private L0 and shared L1 instruction caches.  All 
PEs and L1 accelerators share access to the tightly coupled data memory (TCDM). The TCDM is 
a multi-banked (typically a banking factor of 2 which results in 2xP banks) scratchpad memory 
that is explicitly managed by software and is the main way for the PEs and L1 accelerators to 
access data with a single cycle latency. The DMA module within the cluster can be programmed 
by the PEs to transfer data between the larger L2 main memory in the host domain and the 
compute cluster. An event unit provides the means for synchronization between the PEs. 
 

 
FIGURE 4: LOGARITHMIC INTERCONNECT. 

  
Each PE is connected via two interconnects: The peripheral interconnect is a low bandwidth 
bus based on PERIPH protocol or the Register protocol (see Section 3.4.3) used for the 
configuration of the DMA, event unit, and, most importantly, the L1 accelerator’s control plane. 
The TCDM interconnect provides low latency and high-bandwidth access to the shared TCDM 
memory and is based on the so-called Logarithmic Interconnect, a forest of arbitration trees 
providing parallel single-cycle access to the multi-banked memory with transparent 
arbitration in the case of bank conflicts between different processing elements. The TCDM 
interconnect is shown in Figure 4 and follows the TCDM protocol (see Section 3.4.2). The 
complexity in terms of area and timing of the Logarithmic Interconnect can explode if to many 
PEs and/or L1 accelerator ports get connected (Figure 5). Therefore, if more bandwidth is 
required, the cluster needs to use the Heterogeneous Cluster Interconnect (HCI) and shown in 
Figure 6. In that case the L1 accelerator should use the HCI protocol (see Section 3.4.2). 
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FIGURE 5: L1 ACCELERATOR INTEGRATION WITH LOGARITHMIC INTERCONNECT. 

 

 
FIGURE 6: L1 ACCELERATOR INTEGRATION WITH HETEROGENEOUS CLUSTER INTERCONNECT (HCI). 
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3.1.3. Accelerator Integration Levels 

We define three different levels of integration which can be used to integrate the accelerators: 

• L0: a RISC-V co-processor 
o control plane: Core-V-X, RISC-V ISA extensions 
o data plane: Core-V-X, tightly coupled to the pipeline stages of the RISC-V 

processor, uses the RISC-V core’s load-store unit (LSU) 
• L1: Tightly coupled accelerator 

o control plane: PERIPH or Register protocol, memory-mapped register file to 
configurable control sequencer 

o data plane: TCDM or HCI protocol, independent of the RISC-V core, uses and 
controls its own streamers/DMAs 

• L2: Loosely coupled AXI4- accelerator 
o control plane: AXI4 
o data plane: AXI4 

TABLE 2: OVERVIEW OF THE SUPPORTED INTERFACES FOR EACH ACCELERATOR INTEGRATION LEVEL. 
Integration 

Level Plane Supported Protocols (only one per plane) 

L0 Control & Data Core-V-X (Section 3.3.1) 

L1 
Control Peripheral Interface, Register Interface (Section 3.4.3) 

Data TCDM or HCI interface (Section 3.4.2) 
L2 Control & Data AXI4 (Section 3.5.1) 

 

Table 2 gives a summary of the supported protocols for the control and the data plane for each 
accelerator integration level. The protocols are described in next sections. 

In Section 3.2 we specify some specifications which all accelerators need to follow. Depending 
on the chosen integration level, the accelerators need to implement one of the interfaces 
instructions from Section 3.3 for L0 integration, Section 3.4 for L1 integration, and Section 3.5 
for the L2 integration. 
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3.2. General Specifications for all Accelerators 

To keep the accelerators aligned and easy to integrate, every accelerator has to follow the 
specification described in the following subsections. 

3.2.1. General 

All signal directions are stated from the perspective of the Accelerator. Therefore, input-
signals are signals driven by the interface logic around the Accelerator while output-signals 
are driven by the Accelerator. If not otherwise indicated, all signals are active-high. 

3.2.2. Clock & Reset   

Table 3 gives an overview of all interface signals which each accelerator needs to support. All 
the interface signals of the accelerator are synchronized to the rising edge of the reference 
clock REF_CLK. 
 

TABLE 3: CLOCK AND RESET SIGNALS. 

Signal Width [bits] Direction Description 

REF_CLK 1 input The reference clock with which the interface 
is synchronized. 

RSTN 1 input Asynchronous active-low reset. 
SOFT_CLEAR 1 input Synchronous active-low soft reset. 

 
The asynchronous reset signal RSTN is asserted during system power-up and completely 
resets the accelerator. The synchronous soft clear signal SOFT_CLEAR on the other hand is 
used by the interface logic to reset the Accelerator Block to a known good state or when a Soft 
Clear was requested by a PE. A soft clear does not necessarily re-initialize the content of the 
non-volatile memory or long-lived configuration but must unconditionally and immediately put 
the accelerator into a known good idle state where it is ready to accept a new instruction. 
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3.3. L0 – Accelerator: RISC-V Co-processor 

L0-accelerators are tightly-coupled Co-Processors (e.g. an FPU) to the RISC-V PEs which can 
implement custom ISA extensions to accelerate specific workloads. The PEs can offload 
instructions that it does not itself is able to process to the L0-accelerators. An overview of 
the L0-accelerator is shown Figure 7. 
 
 

 
FIGURE 7: BASE COMPUTE CLUSTER WITH L0 INTEGRATED RISC-V CO-PROCESSOR. 

 
 

3.3.1. Control and Data plane: Core-V-X 

L0-Accelerators (co-processors) can be attached to the RISC-V PEs via the Core-V-X 
interface. The Core-V-X enables extending CPU with (custom or standardized) instructions 
without the need to change the RTL of CPU itself. Extensions can be provided in separate 
modules external to CPU and are integrated at system level by connecting them to the Core-
V-X. The Core-V-X provides low latency (tightly integrated) read and write access to the CPU 
register file. Opcodes which are not used (i.e., considered to be invalid) by CPU can be used for 
extensions. The official documentation can be found in the link4. 

The Core-V-X interface consist of six different interfaces which are described in Table 4. The 
exact signals are omitted, but are described in more detail in the documentation. 

 

 

 

 
4 https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/latest/ 

https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/latest/
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TABLE 4: CORE-V-X INTERFACE. 

Interface Signal from CPU Signals to CPU Description 

Compressed valid, req ready, resp Compressed instruction to be 
offloaded. 

Issue valid, req ready, resp 
Uncompressed instruction to be 
offloaded including its register file 
based operands. 

Commit valid, commit - 
Signaling of control signals related 
to whether instructions can be 
committed or should be killed. 

Memory req/resp valid, req ready, resp 
Signaling of load/store related 
signals (i.e. its transaction request 
signals). This interface is optional. 

Memory result valid, result - 
Signaling of load/store related 
signals (i.e. its transaction result 
signals). This interface is optional. 

Result ready valid, result Signaling of the instruction result(s) 
 

3.3.2. Programming Model 

L0-accelerators can be programmed by extending the RISC-V ISA with custom ISA extensions. 
The RISC-V automatically offloads instructions that it cannot process over the Core-X-V 
interface to the L0-accelerators. To this end, compiler support must be added for the custom 
ISA extensions. Various PULP ISA extensions have already been added to the LLVM compiler5 
and GCC6. 

 

 
FIGURE 8: BASE COMPUTE CLUSTER WITH L0 AND L1 INTEGRATED ACCELERATORS USING THE HETEROGENEOUS CLUSTER INTERCONNECT 

(HCI).  

 
5 https://github.com/pulp-platform/llvm-project 
6 https://github.com/pulp-platform/riscv-gcc 

https://github.com/pulp-platform/llvm-project
https://github.com/pulp-platform/riscv-gcc


  
 

Grant Agreement 101070374                 Page  |  21 
 

3.4. L1 – Accelerator: Tightly-Coupled Accelerator 

The PULP project has designed already various accelerators which correspond to the L1-level 
integration used in the CONVOLVE project and are called Hardware Processing Engines 
(HWPEs)7. The project has released some of the accelerators a set of IPs open-source on 
Github8.  

CONVOLVE partners are free to re-use these IPs to design and integrated their own 
accelerators into a PULP cluster as described in Section 3.1.3. 

 
3.4.1. HWPE Overview 

The HWPE are specialized accelerators that work in conjunction with a PULP system to 
enhance its performance and energy efficiency for specific tasks. 

Unlike other accelerators mentioned in literature, HWPEs do not rely on an external DMA for 
input and output or being tied down to one core. Instead, they operate directly on the shared 
memory used by other elements, such as a general-purpose PE in a cluster, while their control 
is accessed through a peripheral bus or interconnect. Combining HW-based execution on an 
HWPE with general-purpose software code is easy as only pointers and configuration 
parameters need exchanging between them. 

Figure 9 is giving an overview of a typical HWPE accelerator which is split into three domains: 
control, streamer, and engine. 

 
FIGURE 9: HWPE OVERVIEW. 

  

 
7 https://hwpe-doc.readthedocs.io/en/latest/chips.html 
8 https://hwpe-doc.readthedocs.io/en/latest/github.html 

https://hwpe-doc.readthedocs.io/en/latest/chips.html
https://hwpe-doc.readthedocs.io/en/latest/github.html
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The control domain exposes a control plane interface used to program the accelerator. 
Typically, a general-purpose core writes a set of pointers and job configuration parameters 
over the interface into a register file which are used by a main finite-state-machine (FSM) to 
control the streamer and the engine of the accelerator. A set of IPs which can be used by 
partners to design the control domain can be found on the GitHub9. 

The streamer domain exposes a data plane interface and includes a set of address generators 
which are controlled by the main FSM of the control domain. The fetched data is typically 
converted into simple data streams which are valid/ready based and are given into the 
engine10. More information of the protocol conversion can be found in the documentation11. 

The engine domain contains the actual datapath of the accelerator and is controlled by the 
main FSM of the control domain. The engine typically also contains a set of local fine-grained 
FSMs. 

A set of simpler example HWPE accelerators can be found here: 
• Basic HWPE12 example with basic streamers - MAC engine with single Multiply-

Accumulate 
• Basic HWPE example with HCI streamers - pure data mover13 

A set of more complex example HWPE accelerators can be found here: 

• Reconfigurable Binary Engine14 - neural accelerator with flexible precision for weights 
and activations [33] 

• Neural Engine15 (16 input-channels) - neural accelerator with flexible precision for 
weights. The accelerator is used in the Gap9 SoC from Greenwaves16  

• RedMulE17 (REDuced-precision Matrix MULtiplication Engine) is a 8-bit and 16-bit 
floating-point systolic array [34] 

In the following, the data plane and control plane interface which can be used for the L1-
accelerator are described (see Figure 10). 

 

 
9 https://github.com/pulp-platform/hwpe-ctrl/ 
10 https://hwpe-doc.readthedocs.io/en/latest/protocols.html#hwpe-stream-protocol 
11https://hwpe-doc.readthedocs.io/en/latest/protocols.html#exchanging-data-between-
hwpe-mem-and-hwpe-stream 

 
12 https://github.com/pulp-platform/hwpe-mac-engine 
13 https://github.com/pulp-platform/hwpe-datamover-example 
14 https://github.com/pulp-platform/rbe 
15 https://github.com/pulp-platform/ne16 
16 https://greenwaves-technologies.com/gap9_processor/ 
17 https://github.com/pulp-platform/redmule 

https://github.com/pulp-platform/hwpe-ctrl/
https://hwpe-doc.readthedocs.io/en/latest/protocols.html#hwpe-stream-protocol
https://hwpe-doc.readthedocs.io/en/latest/protocols.html%23exchanging-data-between-hwpe-mem-and-hwpe-stream
https://hwpe-doc.readthedocs.io/en/latest/protocols.html%23exchanging-data-between-hwpe-mem-and-hwpe-stream
https://github.com/pulp-platform/hwpe-mac-engine
https://github.com/pulp-platform/hwpe-datamover-example
https://github.com/pulp-platform/rbe
https://github.com/pulp-platform/ne16
https://greenwaves-technologies.com/gap9_processor/
https://github.com/pulp-platform/redmule
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FIGURE 10: HWPE ABSTRACTION OF THE DATA PLANE AND CONTROL PLANE. 

 

3.4.2. Data Plane 

TCDM Interface 
L1-Accelerators are connected to external L1/L2 shared memory by means of a simple memory 
protocol using a request/grant handshake. The protocol used is called Tightly-Coupled Data 
Memory (TCDM) protocol, which is very similar to the OBI18, and HWPE-mem19. It is the same 
protocol as the one used by cores and DMAs operating on memories. It only supports individual 
transactions (no bursts) and assumes very tight coupling to memories with very low latencies. 
  

TABLE 5: TCDM PROTOCOL. 
Signal Width [bits] Direction Description 

req 1 Master → Slave Handshake request signal (1=asserted). 

gnt 1 Slave → Master Handshake grant signal (1=asserted). 

add 32 Master → Slave Word-aligned memory address. 

wen 1 Master → Slave Write enable signal (1=read, 0=write). 

be 4 Master → Slave Byte enable signal (1=valid byte). 

data 32 Master → Slave Data word to be stored. 

r_data 32 Slave → Master Loaded data word. 

r_valid 1 Slave → Master Response valid (1=asserted). 

req 1 Master → Slave Handshake request signal (1=asserted). 

gnt 1 Slave → Master Handshake grant signal (1=asserted). 

 
It supports neither multiple outstanding transactions nor bursts, as the accelerators are 
assumed to be closely coupled to memories, with single-cycle latencies when there is no 
contention. The TCDM protocol is used to connect a master to a slave. Table 5 reports the 
signals used by the TCDM protocol. 
 
 

 
18 https://github.com/openhwgroup/obi/blob/188c87089975a59c56338949f5c187c1f8841332/OBI-
v1.5.0.pdf 
19 https://hwpe-doc.readthedocs.io/en/latest/protocols.html#hwpe-mem 
 

https://github.com/openhwgroup/obi/blob/188c87089975a59c56338949f5c187c1f8841332/OBI-v1.5.0.pdf
https://github.com/openhwgroup/obi/blob/188c87089975a59c56338949f5c187c1f8841332/OBI-v1.5.0.pdf
https://hwpe-doc.readthedocs.io/en/latest/protocols.html#hwpe-mem
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The handshake signals req and gnt are used to validate transactions between masters and 
slaves. Transactions are subject to the following rules (see Figure 11 and Figure 12): 

1. A valid handshake occurs in the cycle when both req and gnt are asserted. This is true 
for both write and read transactions. 

2. Every transaction is completed with the r_valid signal being asserted for one cycle.  
In the case of read requests, the asserted r_valid d indicates that the requested data 
is now provided at r_data. For write transactions the asserted r_valid signal 
indicates the completion of the write request. In this case r_data contains invalid 
data. 

3. The assertion of req (transition 0 → 1) cannot depend combinationally on the state of 
gnt. On the other hand, the assertion of gnt (transition 0 → 1) can depend 
combinationally on the state of req (and typically it does). This rule avoids deadlocks in 
ping-pong logic. 

 
 

 
FIGURE 11: MULTIPLE TCDM READ REQUESTS. 

 
 

 
FIGURE 12: MULTIPLE TCDM WRITE REQUESTS. 
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HCI-Core Interface 
HCI-Core (Heterogeneous Cluster Interconnect – Core) is a protocol designed as a lightweight 
extension of TCDM better suited for the needs of accelerators, specifically cluster-coupled 
HWPEs. If more bandwidth is required, we recommend using the HCI interface (see Section 
3.1.2). The HCI-Core interface supports multiple outstanding transactions and is further 
specified in the documentation20. The interface provides signals in addition to the TCDM 
signals. Please discuss using these additional signals with ETHZ before accelerator design. 
 
 

3.4.3. Control Plane 

Peripheral Interface 
To enable control of the Accelerators, they typically expose a slave port to the peripheral 
system interconnect (see Section 3.1.2). The slave port follows an extension of the TCDM 
protocol which we can call PERIPH. The PERIPH protocol is the same exposed by most 
peripherals in a PULP system and used by the GP cores to communicate with them. Table 6 
gives an overview of all PERIPH signals. 
 

The PERIPH protocol is distinguished by the TCDM protocol by the id and r_id side channels. 
They are used in load operations issued through a PERIPH interface: the id identifies the 
master during the request phase, is buffered by the slave peripherals and accompanies the 
response phase as r_id. In this way, multiple masters can distinguish which traffic is related 
to themselves. 
 

TABLE 6: PERIPH PROTOCOL. 
Signal Width [bits] Direction Description 
req 1 Master → Slave Handshake request signal (1=asserted). 

gnt 1 Slave → Master Handshake grant signal (1=asserted). 

add 32 Master → Slave Word-aligned memory address. 

wen 1 Master → Slave Active-low write enable signal (1=read, 
0=write). 

be 4 Master → Slave Byte enable signal (1=valid byte). 

data 32 Master → Slave Data word to be stored. 

id ID_WIDTH Master → Slave ID used to identify the master (request) 

r_data 32 Slave → Master Loaded data word. 
r_valid 1 Slave → Master Valid loaded data word (1=asserted). 
r_id ID_WIDTH Slave → Master ID used to identify the master (reply). 

 
 
 
 
 

 
20 https://hwpe-doc.readthedocs.io/en/latest/protocols.html#hci-core 

https://hwpe-doc.readthedocs.io/en/latest/protocols.html#hci-core
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Register Interface 
A simple protocol for memory-mapped registers can also be used (see Figure 13 and Figure 
14). Register generation is possible with the reggen tool using the version in the GitHub21. 
 

 
FIGURE 13: REGISTER INTERFACE WRITE TRANSACTION. 

 
 

 
FIGURE 14: REGISTER INTERFACE READ TRANSACTION. 

 
 

3.4.4. Programming Model 

To initialize the accelerator, its configuration port is used, passing the required information. 
Typically, one PE writes to the memory-mapped control registers. The accelerator is 
responsible for managing its own data, fetching and storing it back to the TCDM memory. 
Typically, these accelerator types should allow multiple contexts for job configuration to 
achieve a performance on full applications and not only on kernels. Additionally, we 
recommend the use of a done signal, which can be connected to the event unit and is used to 
wake-up the PE once the offloaded job running on the accelerator is finished. 

 
21 https://github.com/pulp-platform/register_interface.  
 

https://github.com/pulp-platform/register_interface
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3.5. L2 – Accelerator: Loosely-Coupled Accelerator 

An L2 accelerator is loosely coupled to the system, attaching to the global AXI-compatible 
interconnect or network.  
 

3.5.1. Merged: Control & Data Plane: AXI 

Both for control and data management, the accelerators use AXI4, compatible with the AXI4 
specification from ARM22. For integration, using the pulp-platform AXI4 IPs23 is 
recommended. The specification describes the protocol fields to be implemented for an AXI4 
interface and how they should behave w.r.t. timing, ordering, etc., so we will abstain from 
providing further details here. The PULP AXI4 IPs provide a library of compatible 
interconnect management IPs that can be used for the design. 
 
An accelerator will have two AXI ports, a single slave port allowing incoming requests for 
control, and a single master port allowing outgoing requests for data movement. Please note 
that these will have different ID widths for proper interconnect design. 
 

3.5.2. Programming Model 

To initialize the accelerator, its configuration port is used, passing the required information. 
The accelerator is responsible for managing its own data, fetching and storing it back to a main 
memory (e.g. L2). The architecture to handle the data movement is responsibility of the 
accelerator designer, but can be accomplished using a dedicated Direct Memory Access (DMA) 
engine, such as the iDMA24. Typically, these accelerator types should allow a form of double-
buffering and multiple contexts for job configuration. Additionally, we recommend the use of 
a done signal, which can be connected to a system-level event unit and is used to wake-up the 
host core once the offloaded job running on the accelerator is finished. 

 

  

 
22 https://developer.arm.com/documentation/ihi0022/e/ 
23 https://github.com/pulp-platform/axi 
24 https://github.com/pulp-platform/iDMA 

https://developer.arm.com/documentation/ihi0022/e/
https://github.com/pulp-platform/axi
https://github.com/pulp-platform/iDMA
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4. Collaboration Tools 

All hardware designed for the project is stored in corresponding git repositories, one for 
each IP, stored in the Eindhoven gitlab server. 
 
Each IP will provide a Bender.yml file for the design, indicating its dependencies and the 
source files required for the design. This file is designed to be used with bender25. A full 
description of the format can be found in the ReadMe of bender. 
 
Git and bender will be used to combine the IPs into a full SoC. 

  

 
25 https://github.com/pulp-platform/bender 

https://github.com/pulp-platform/bender
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5. Required Models and Views to achieve Goals of WP6  

The next tasks of WP6 include the development and use of a compositional performance 
analysis model to model energy and latency at the SoC level, including the modelling of the SoC 
level memory hierarchy and processing host, as well as integrating the different accelerator 
component models of WP2/3. The use of such a model will moreover enable run-time 
performance assessment of an application when the platform configuration changes. 
 
In the following the required accelerator models that will be needed from WP2/3 to such that 
the accelerators can be evaluated as part of the performance model that will be developed as 
part of T6.2 and used in T6.3. Firstly, there is the GVSoC simulator, which can be used for rapid 
SW prototyping and performance evaluation. Secondly, there is ZigZag which enables high-
level accelerator design space explorations (DSE). 
 

5.1. GVSoC Simulator 

Simulating an entire heterogeneous SoCs which combines general-purpose cores with 
application-specific accelerators is rather complex and slow. Overall, this heterogeneity level 
requires a complex hardware and a full-fledged software stack to evaluate applications while 
exploiting all platform features. For this reason, enabling agile design space exploration 
becomes a crucial asset for exploring such heterogeneous SoCs. In this scenario, high-level 
simulators play an essential role in breaking the speed and design effort bottlenecks of cycle-
accurate simulators and FPGA prototypes, respectively, while preserving functional and 
timing accuracy. 
 
For this reason, the PULP project has developed GVSoC, a highly configurable and timing-
accurate event-driven simulator that combines the efficiency of C++ models with the flexibility 
of Python configuration scripts. An overview is shown in Figure 15. GVSoC is fully open-
sourced, with the intent to drive future research in the area of highly parallel and 
heterogeneous RISC-V based IoT processors, which aligns with the goals of WP6 in 
CONVOLVE. 
 
GVSoC leverages three foundational features: 
 

• Python-based modular configuration of the hardware description 
• easy calibration of platform parameters for accurate performance estimation 
• high-speed simulation 

 
Overall, GVSoC enables practical functional and performance analysis and design exploration 
at the full-platform level (processors, accelerators, memory, peripherals and IOs) with a 
speed-up of 2500x with respect to cycle-accurate RTL simulation with cycle count errors 
typically below 10% for performance analysis [1]. 
 
The python-based modular configuration used to describe the entire platform plugs together 
a set of individual C++ models. Figure 15 gives an overview of the individual GVSoC 
components. For example, various accelerators can be developed individually and be enabled 
or disabled very easily for a system simulation. GVSoC already implements several L1-
integrated accelerators (Section 3.4) and the standard interface to use as a template for new 
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ones. Adding a new accelerator requires specifying its address space, the name and the 
number of ports, and the events that it can raise. Similarly, GVSoC partially supports already 
the use of multiple compute clusters (a type of L2-accelerators) [2] as described in Section 
3.1.2. 

 

 
FIGURE 15: OVERVIEW OF GVSOC’S MAIN COMPONENTS [1]. 

 
 

5.1.1. Required Models 

GVSoC already supports a few L1-integrated accelerators which serve as an example for the 
required model: 

• NE1626 – a convolution accelerator which is in the GAP9 product from Greenwaves27  
• IMA28– an in-memory-compute accelerator 

These accelerators are compiled from the pulp-sdk29 and with the traditional PULP Open 
cluster as it includes the low-level register map and HAL needed to run e.g., some kernels on 
the IMA accelerator. 

For CONVOLVE, each accelerator should deliver a similar event-based C++ model (as those 
pointed to above) which functionally behaves the same way as the accelerator and is 
calibrated against a cycle-accurate simulation. 
 
 

 
26 https://github.com/gvsoc/gvsoc-pulp/tree/pulp_devel/models/pulp/ne16 
27 https://greenwaves-technologies.com/gap9_processor/ 
28 https://github.com/gvsoc/gvsoc-pulp/tree/pulp_devel/models/pulp/ima 
29 https://github.com/pulp-platform/pulp-sdk 

https://github.com/gvsoc/gvsoc-pulp/tree/pulp_devel/models/pulp/ne16
https://greenwaves-technologies.com/gap9_processor/
https://github.com/gvsoc/gvsoc-pulp/tree/pulp_devel/models/pulp/ima
https://github.com/pulp-platform/pulp-sdk
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5.2. ZigZag Framework  

Building efficient embedded deep learning (DL) systems requires a tight co-design between 
DNN algorithms, hardware, and algorithm-to-hardware scheduling, a.k.a. dataflow or 
mapping. Different hardware architectures (single-core or multi-core accelerators) are being 
designed, supporting many different scheduling possibilities, for different optimizing targets 
(energy, latency, memory footprint). However, owing to the large joint design space, finding an 
optimal solution through RTL simulation or physical implementation becomes infeasible. To 
tackle this problem, a unified high-level DL accelerator design space exploration (DSE) 
framework infrastructure, called ZigZag [35], will be used, and improved in the CONVOLVE 
project.  
ZigZag30 targets rapid DSE for DNN accelerator platforms supporting a broad set of hardware 
architectures and workload scheduling scenarios beyond other existing frameworks. Stream31 
is an extension of ZigZag [36] capable of modelling multi-core DNN acceleration employing 
fine-grained layer-fused processing. 
 

5.2.1. Required Models 

For CONVOLVE, each partner should deliver their accelerator model with the description of 
their architecture. For CONVOLVE, each partner should deliver their accelerator model with a 
description of their hardware architecture. ZigZag framework will help the partners to evaluate 
the scheduling and observe the interaction of their accelerator proposals with the different 
workloads. ZigZag gives the CONVOLVE partners the opportunity of optimizing their design 
choices driven by the observations of the system-level impact. Next subsections describe the 
following inputs required by ZigZag to describe the model: 
 

• Workload: A neural network model defined in ONNX format or ZigZag's own format. 
• Hardware Architecture: A high-level HW architecture description. 
• Mapping: A file that specifies core allocation, spatial mapping, temporal ordering, and 

memory operand link. 
 

Hardware Architecture 
In this subsection, we introduce the general concept of how HW accelerators are modelled 
within ZigZag and the different well-known accelerators we provide as examples. We start 
from the smallest building block defined in ZigZag and work our way up towards an accelerator. 
 
Operational Unit: Accelerating inference of a NN requires execution of multiplications and 
summations (accumulations) across multiple intermediate data (activations) using trained 
parameters (weights). The operational unit, typically a Multiplier, executes the multiplication 
of two data elements, typically an activation and a weight. r_data 
 
The operational unit object has following attributes: 

• input_precision: List of input operand (data) precision in number of bits for each 
input operand (typically 2 for Multiplier). 

• output_precision: The bit precision of the operation’s output. 

 
30 https://github.com/ZigZag-Project/zigzag 
31 https://github.com/ZigZag-Project/stream 

https://github.com/ZigZag-Project/zigzag
https://github.com/ZigZag-Project/stream
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• energy_cost: Energy of executing a single multiplication. 
• area: The HW area overhead of a single multiplier. 

 
Operational Array: Inferencing a NN typically requires millions of operations, and an 
accelerator typically includes an array of operational units that can execute these operations. 
This can speed significantly up the computations, as well as increase energy efficiency which 
is covered later. The array has multiple dimensions, each with a size. The importance of these 
dimensions is explained in the introduction of the memory hierarchy. 
The operational array object has: 

• operational_unit: The operational unit from which the array is built. 
• dimensions: The dimensions of the array. This should be defined as a python 

dictionary, with the keys being the identifier of each dimension of the array (typically 
‘D1’, ‘D2, …) and the values being the size of this dimension (i.e., the size of the array 
along that dimension). 
 

Memory Instance: In order to store the different activations and weights used for the 
computations in the operational array, different memory instances are attached in a 
hierarchical fashion. The instances define how big each memory is in terms of capacity and 
area overhead, what the cost of writing and reading from these memories is, what it’s 
bandwidth is, and how many read/write/read-write ports it includes.  
The memory instance object has: 

• name: A name for the instance 
• size: The memory size in bits. 
• r_bw/w_bw: A read and write bandwidth in number of bits per cycle. 
• r_cost/w_cost: A read and write energy cost. 
• area: Area overhead of the instance. 
• r_port/w_port/rw_port: The number of read/write/read-write ports the instance 

has available. 
• latency: The latency of an access in number of cycles. 

 
Memory Hierarchy: Besides knowing what the specs of each memory instance are, the 
memory hierarchy encodes information with respect to the interconnection of the memories 
to the operational array, and to the other memory instances. This interconnection is achieved 
through multiple calls to the add_memory(), where the first call(s) adds the first level of 
memories, which connects to the operational array, and later calls connect to the lower 
memory levels. This builds a hierarchy of memories. 
 
To know if the memory should connect to the operational array or another lower memory level, 
it needs to know which data will be stored within the memories. To decouple the algorithmic 
side from the hardware side, this is achieved through the concept of ‘memory operands’ (as 
opposed to ‘algorithmic operands which are typically the I/O activations and weights W’). The 
designer can think of the memory operands as virtual operands, which will later be linked to 
the actual algorithmic operands in the mapping file through the memory_operand_links 
attribute. 
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Similarly to how the operational unit can be unrolled (forming an operational array), the 
memories can also be unrolled, where each memory accompanies either a single operational 
unit or all the operational units in one or more dimensions of the operational array. This is 
encoded through the served_dimensions attribute, which specifies if a single memory 
instance of this memory level serves all operational units in that dimension. This should be a 
set of one-hot-encoded tuples. 
 
Lastly, the different read/write/read-write ports a memory instance has, are assigned to 
the different data movements possible in the hierarchy. There are four types of data 
movements in a hierarchy: from high (fh), to high (th), from low (fl), to low (tl). At the time of 
writing, these can be manually linked to one of the read/write/read-write ports through the 
following syntax: {port_type}_port_{port_number}, port_type being r, w or rw and 
port_number equal to the port number, starting from 1, which allows to allocate multiple ports 
of the same type. Alternatively, these are automatically generated as a default if not provided 
to the add_memory() call. 
 
Internally, the MemoryHierarchy object extends the NetworkXDiGraph object, so its 
methods are available. 
The memory hierarchy object includes: 

• operational_array: The operational array to which this memory hierarchy will 
connect. This is required to correctly infer the interconnection through the operational 
array’s dimensions. Through the add_memory() calls it adds a new MemoryLevel to 
the graph. This requires for each call a: 

• memory_instance: A MemoryInstance object to be added to the hierarchy. 
• operands: The virtual memory operands this MemoryLevel stores. 
• port_alloc: The directionality of the memory instance’s different ports, as described 

above. 
• served_dimensions: The different dimensions that this memory level will serve, as 

described above. 
 
Core: The operational array and the memory hierarchy together form a core of the accelerator. 
The core object includes: 

• id: The id of this core. 
• operational_array: The operational array of this core. 
• memory_hierarchy: The memory hierarchy of this core. 

 
HW Accelerator Model: Multiple cores are combined into the HW Accelerator, which is the 
main object modelling the HW behaviour. 
 
The accelerator object includes: 

• name: A user-defined name for this accelerator. 
• core_set: The set of cores comprised within the accelerator. 
• global_buffer: A memory instance shared across cores. 
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Examples: 
We have modeled 5 well-known DNN accelerators in the ZigZag GitHub Repository32 , which are 
Meta prototype [37], TPU [38], Edge TPU [39], Ascend [40], Tesla NPU [41], and, for our depth-
first scheduling research. To make a fair and relevant comparison, we normalized all of them 
to have 1024 MACs and maximally 2MB global buffer (GB) but kept their spatial unrolling and 
local buffer settings, as shown in Table 7 (IDX 1/3/5/7/9). Besides, we constructed a variant of 
every normalized architecture (by changing its on-chip memory hierarchy), denoted with ‘DF’ in 
the end of the name, as shown in Table 7 (IDX 2/4/6/8/10). 
 

TABLE 7: SETTINGS EXAMPLE FOR ZIGZAG FOR SEVERAL EXISTING HARDWARE ARCHITECTURES. K IS FOR OUTPUT CHANNEL; C IS FOR 

INPUT CHANNEL; OX AND OY ARE THE OUTPUT FEATURE MAP’S SPATIAL DIMENSIONS; FX AND FY ARE THE WEIGHT’S SPATIAL 

DIMENSIONS. 

IDX HW Architecture 

Spatial 
Unroll. 
(1024 
MACs) 

Register 
per MAC 
or MAC 
group 

Local 
Buffer 

2nd level 
LB 

Global 
Buffer 
(max: 2MB) 

1 Meta-proto-like K 32 
C 2 
OX 4 
OY 4 

W: 1B 
O: 2B 

W: 64B 
I: 32KB - 

W: 1MB 
I&O: 1MB 

2 Meta-proto-like DF 
W: 32B 
I&O: 64KB - 

3 TPU-like 
K 32 
C 32 

W: 128B 
O: 1KB - - I&O: 2MB 

4 TPU-like DF 
W: 64B 
O: 1KB 

I&O: 64KB - 
W: 1MB 
I&O: 1MB 

5 Edge-TPU-like K 8 
C 8 
OX 4 
OY 4 

W: 1B 
O: 2B 

W: 32KB - I&O: 2MB 

6 Edge-TPU-like DF 
W: 16KB 
I&O: 16KB 

- 
W: 1MB 
I&O: 1MB 

7 Ascend-like K 16 
C 16 
OX 2 
OY 2 

W: 1B 
O: 2B 

W: 64B 
I: 64KB 
O: 256KB 

- 
W: 1MB 
I&O: 1MB 

8 Ascend-like DF 
W: 64B 
I&O: 64KB 

I&O:256KB 

9 Tesla-NPU-like K 32 
OX 8 
OY 4 

W: 1B 
O: 2B 

W: 1B 
I: 1KB 

- 
W: 1MB 
I&O: 1MB 

10 Tesla-NPU-like DF 
W: 1B 
I: 1KB 

W: 64KB; 
I&O: 64KB 

W: 1MB 
I&O: 896KB 

 

Workload 
The recommended way of defining an algorithmic workload is through an ONNX model. An 
ONNX model can contain multiple operator types, which in the context of ML are often 
referred to as layers, some of which are automatically recognised and parsed by ZigZag. 
Alternatively, the layers can be manually defined for more customization. Following operators 
are supported by ZigZag and will automatically be parsed into LayerNode objects when using 
a ONNX model within the framework: 

• Conv 

• QLinearConv 

• MatMul 

 
32 https://github.com/ZigZag-Project/zigzag 

https://github.com/ZigZag-Project/zigzag
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Manual layer definition: It is also possible to manually define custom workload layers. In that 
case there the main.py file should be executed instead of main_onnx.py. Moreover, the 
workload file should be provided as input together with the accelerator, thus there is no ONNX 
model and mapping file loaded. The mapping information is inserted for each layer alongside 
the layer shape definition, identically to how it was defined in the mapping file. 
 
Each layer definition is represented as a dictionary which should have the following attributes: 
equation: The operational equation for this layer. The dimensions should be small letters, 
whereas the operands are large letters. O should always be used for the output operand; the 
input operands can be named freely. 
 

• dimension_relations: The relationship between different dimensions presents in 
the equation. This is often used in convolutional layers, where there is a relationship 
between the spatial input indices and the spatial output indices through the stride and 
with the filter indices through the dilation rate. 

 
• loop_dim_size: The size of the different dimensions presents in the equation. 

Dimensions defined (i.e., on the left-hand side) in the dimension_relations are not to 
be provided and are inferred automatically. 

 
• operand_precision: The bit precision of the different operands presents in the 

equation. O should always be used, which represents the partial output precision. 
O_final represents the final output precision. 

 
• operand_source: The layer id the input operands of this layer come from. This is 

important to correctly build the NN graph edges. 
 

• constant_operands: The operands of this layer which are constants and do not 
depend on prior computations. 

 
• core_allocation: The core that will execute this layer. 

 
• spatial_mapping: The spatial parallelization strategy used for this layer. If none is 

provided, the SpatialMappingGeneratorStage should be used within ZigZag’s 
execution pipeline. 

 
• memory_operand_links: The link between the virtual memory operands and the 

actual algorithmic operands. For more information, read the hardware readme. 
 

Mapping 
The mapping defines how the algorithmic operations are mapped onto the computational 
hardware resources. The ZigZag framework automates (parts of) this mapping, but some 
aspects need to be (at the time of writing) user defined. The mapping input file is required for 
running ZigZag in combination with the ONNX interface. When manually defining the 
algorithmic layers, the mapping information is encoded within the workload definition. 
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The mapping file should contain following aspects for every ONNX node that will be mapped 
onto the accelerator: 
 

• core_allocation: The accelerator core id onto which this ONNX node is mapped (the 
id provided when creating the core in the HW description file). 

 
• spatial_mapping: The spatial parallelization strategy to execute the node with (this 

can be automated through the SpatialMappingGeneratorStage). 
 

• memory_operand_links: The memory operand links, which link the memory 
operands (defined in the memory hierarchy of the core) to the layer operands (which 
are generated in the ONNXModelParserStage and are typically O, I, W for a 
convolutional layer). This extra memory mapping is added to allow flexible memory 
allocation schemes. A default entry can also be defined. This is useful to have different 
ONNX node names, or for customizing the workload for every mapped node. The 
default entry is automatically detected under the default key of the mapping 
dictionary. 

 

6. Overview of WP6 Work Plan 

In this section, an overview of the ongoing and upcoming tasks as well as deliverables of WP 
6 are given. An overview of all tasks, deliverables including the expected timelines is given in 
Table 8.   
 

6.1. Task 6.2: Performance Analysis and Management of ML Applications on 
Modular Architectures 

In this task, the partners will work on the modelling infrastructure to model energy and latency 
at the SoC level considering the SoC host and overall memory hierarchy, as well as the smooth 
integration of the new accelerator models developed by WP2/3 and specified in Section 5.2. 
The development of efficient compositional models focuses on enabling both design-time and 
run-time (dynamic) flexibility and re-configuration. Furthermore, the compositional models 
will enable run-time performance assessment of an application when the platform 
configuration changes. 
 

6.2. Task 6.3: Modular Flexibility-Aware DSE Framework for Efficiency and Fault-
Tolerance 

In this task, the DSE framework ZigZag will be extended with modelling capabilities for multi-
core compute cluster, multi-accelerator, as well as layout-aware cost modelling. In addition, 
the DSE framework will be enhanced to model the memory hierarchy and architecture of the 
open-source hardware IPs used to design the SoC template described in this deliverable D6.1.  
The goal is that the DSE framework which can derive the optimal combination of accelerators, 
together with the best design- and run-time flexibility parameter (ranges), given target 
workloads and application constraints. This task builds on the models of T6.2, as well as the 
compiler directives of WP5. 
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6.3. Task 6.2: Rapid Design Instantiation and Validation of Modular and Flexible 
Architectures 

This task enabled the rapid instantiation and verification of the optimized multi-accelerator 
machine learning SoC architectures. This includes the development of the parameterized 
(System)Verilog SoC template and the supported interfaces described in this deliverable, as 
well as the extension and development of the simulator. Furthermore, the partners will work 
on automated integration of the different components, including testbench generation, for 
the parametrized SoC architectures. The verification flow orients on the industry needs and 
includes tests for functional correctness, timing criticality, security, and fault tolerance into 
the methodology. The task will result in a prototype SoC developed with the target 
methodology. 
 

TABLE 8: OVERVIEW AND TIMELINE OF WP6. 
Working Package 6 Participants 3 6 9 12 15 18 21 24 27 30 33 

Compositional architecture 
DSE and SoC generation 

                                    

T6.1 Modular architecture 
template definition 

ETHZ, TUE, TUD, 
KUL, RUB, UMU 

                                 

T6.2 Performance analysis and 
management of ML 
Applications on Modular 
Architectures 

TUE, FMI, KUL, 
BOS, NXP, UED, 
UMU 

                                 

T6.3 Modular flexibility-aware 
DSE framework for efficiency 
and fault-tolerance 

KUL, ETHZ, FMI, 
BOS 

                                 

T6.4 Rapid design instantiation 
and validation of modular and 
flexible Architectures 

BOS, ETHZ, KUL, 
RUB, UED 

                                 

                          
D6.1 Modular architecture 
template definition 

Lead ETHZ                                   

D6.2 Description of the gen1 
performance analysis 
framework and DSE framework 

Lead TUE                                  

D6.3 Description SoC 
architecture, and the rapid 
design & prototyping 
environment 

Lead BOS                                   

D6.4 Final integrated 
modelling, design exploration 
and generation tool flow 

Lead KUL                                   
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7. Conclusion  

To summarize, this deliverable D6.1 specified the high-level RISC-V SoC template and 
standardized interfaces to enable a modular and easy integration of multiple ML and security 
accelerators. The described three integration levels cover various accelerator design styles: 
L0 co-processors, L1 tightly coupled accelerators, and the L2 loosely coupled accelerators. In 
addition, the deliverable specifies the accelerator models required to consider the individual 
accelerators in a compositional simulator based on GVSoC and in the high-level accelerator 
design space explorations based on ZigZag. 
 
Overall, this specification deliverable D6.1 lays the foundation to successfully combine the 
work of individual CONVOLVE work packages to enable a rapid and modular design flow for 
heterogeneous ultra-low-power reliable and secure edge AI devices, including their SW and 
compiler infrastructure. 
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