
 

Disclaimer 
This project has received funding from the European Union’s Horizon 2021 research and innovation programme under 
grant agreement No 101070374. This document has been prepared for the European Commission, however, it reflects 
the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the 
information contained therein. 

Seamless design of smart edge processors 

 

GRANT AGREEMENT NUMBER: 101070374 

 

 

Deliverable D5.1 

Constraints and opportunities definition 

 

 

 

 

 

 

 



D5.1 Constraints and opportunities definition 

Grant Agreement 101070374                     Page  
|  2 

 

 

Title of the deliverable Constraints and opportunities definition 

WP contributing to the deliverable WP 5 

Task contributing to the deliverable Task 5.1 

Dissemination level PU – Public 

Due submission date 30/04/2023 

Actual submission date 03/05/2023 

Author(s) 

Alexandra Jimborean 

Kunwar Grover 

Ravikiran R 

Victor Jung 

Josse Van Delm 

Gianna Paulin 

Sasha Lopoukhine 

Sven Argo 

Sam Ainsworth 

Tobias Grosser 

Jose Luis Abellan 

Internal reviewers 
Jan Richter-Brockmann 

Taouil Mottaqiallah 

 

 

 



D5.1 Constraints and opportunities definition 

Grant Agreement 101070374                     Page  
|  3 

 

Document 
Version 

Date Change 

V0.1 24/02/2022 Table of content and main document structure 

V0.2 14/03/2023 Table of content aligned to the template and assignments 

V0.3 06/04/2023 Style formatting 

V0.4 09/04/2023 New template 

 

 

  



D5.1 Constraints and opportunities definition 

Grant Agreement 101070374                     Page  
|  4 

 

Table of Contents 
 
Deliverable Summary .................................................................................................................. 6 

1. Introduction ......................................................................................................................... 6 

2. High-level Description of the Objectives .............................................................................. 6 

2.1. WP Objectives .................................................................................................................. 6 

2.2. WP Contribution to CONVOLVE’S Objectives ................................................................ 7 

3. State of the Art in the Neural Networks Compilation Flows .................................................. 8 

3.1. Frameworks ..................................................................................................................... 8 

3.1.1. MLIR ...................................................................................................................... 8 

3.1.2. PyTorch................................................................................................................. 9 

3.1.3. Torch-MLIR ............................................................................................................... 9 

3.1.4. TorchScript .............................................................................................................. 9 

3.1.5. LinAlg (on Tensors and Buffers) ................................................................................ 9 

3.1.6. Loops(Affine/SCF) .................................................................................................. 10 

3.1.7. LLVM ...................................................................................................................... 10 

3.1.8. RISC-V .................................................................................................................... 10 

3.2. Neural Networks Deployment.......................................................................................... 11 

3.3. Neural Networks Optimizations....................................................................................... 11 

3.3.1. Quantization ............................................................................................................12 

3.3.2. Layout Optimizations ...........................................................................................12 

3.3.3. Pruning ................................................................................................................ 13 

3.3.4. Multithreading ...................................................................................................... 13 

3.3.5. Transformation .................................................................................................... 13 

3.4. Kernel Optimizations ....................................................................................................... 13 

3.4.1. Tiling .................................................................................................................... 13 

3.4.2. Operator Fusion ...................................................................................................14 

3.5. Optimization Frameworks ...........................................................................................14 

3.5.1. Halide for High-Performance Image and Signal Processing ................................. 15 

3.5.2. Tensor Virtual Machine (TVM) ............................................................................... 15 

3.5.3. Tensor Comprehensions ...................................................................................... 16 

3.5.4. Dory ..................................................................................................................... 16 

3.5.5. OpenXLA : StableHLO, XLO, IREE ......................................................................... 17 

3.6. Security in Compilation ................................................................................................... 17 

3.6.1. Side-Channel Attacks and State-of-the-Art Countermeasures ................................ 17 

3.6.2. Reverse Engineering ................................................................................................ 19 



D5.1 Constraints and opportunities definition 

Grant Agreement 101070374                     Page  
|  5 

 

3.6.3. Secure Compilation in CONVOLVE .......................................................................... 20 

4. High-level Description of the Target Architecture and its Accelerators ............................. 20 

4.1. The PULP platform ..........................................................................................................21 

4.2. Programming Interface .................................................................................................. 22 

4.2.1. Accelerators ........................................................................................................... 23 

5. Roadblocks ........................................................................................................................ 24 

6. Reseach ............................................................................................................................. 27 

6.1. Compilation Pipeline ...................................................................................................... 27 

6.2. Research on Interfacing with the Accelerators .............................................................. 29 

6.3. Dependencies with other WPs ....................................................................................... 30 

6.4. Use Cases Requirements Addressed by the WP .............................................................. 31 

6.4.1. Use-Case 1: Speech Quality and Denoise ................................................................. 32 

6.4.1.1. Description ............................................................................................................. 32 

6.4.1.2. Corresponding Security Concerns .......................................................................... 33 

6.4.1.3. Reference to the Complied Code ............................................................................ 34 

6.4.1.4. Characterization of the Use Case ............................................................................ 34 

6.4.2. Use-Case 2: Audio Detection and Tracking ............................................................. 35 

6.4.2.1. Description ............................................................................................................. 35 

6.4.2.2. Conclusion .............................................................................................................. 36 

6.4.3. Use-Case 3: Image Processing ............................................................................... 36 

6.4.3.1. Description ............................................................................................................. 36 

6.4.3.2. Characterization of the Use Case ............................................................................ 36 

6.4.4. Use-case 4: Satellite Image Segment ..................................................................... 38 

6.4.4.1. Description ............................................................................................................. 38 

6.4.4.2. Conclusions ............................................................................................................ 38 

6.5. Description of the Contributions to the Demos .............................................................. 38 

7. Plans .................................................................................................................................. 39 

8. Reference .......................................................................................................................... 40 

 

  



D5.1 Constraints and opportunities definition 

Grant Agreement 101070374                     Page  
|  6 

 

Deliverable Summary 
 
This document presents first a high-level description of the objectives of the work-package, 
focusing on the compilation-flow and mapping of the neural network applications to the 
accelerators developed in this project. We present then the state-of-the-art tools employed in 
compiling and optimizing neural networks and show their limitations.  We also review security 
concerns and constraints, together with some compile-time methods for mitigating them.    
 
Next, we turn the attention to the target hardware, we describe the target hardware platforms 
and the envisioned accelerators to be developed in CONVOLVE, together with their 
characteristics. The hardware characteristics will be leveraged by the compiler when mapping 
applications to accelerators.     
 
Generating optimized code and mapping the applications to the target accelerators is a 
challenging task. We describe the compilation-flow, the tools, and the open-source 
infrastructure (such as LLVM, MLIR) that we plan to employ and present several scenarios for 
interfacing with the accelerators. To ease this process, we aim to combine automatic code 
generation and optimization with expert intervention, through a “grey-box” compilation flow, that 
opens-up the compiler decisions to the expert. We conclude with the research roadmap 
envisioned in the work-package.  
  

1. Introduction 
 
This document “Constraints and opportunities definition” is a deliverable of the Work package No. 
5 “Transparent and compositional programming flow”, task T5.1 “Analysis of application and 
hardware constraints and opportunities and Software Design” under the task lead of UMU, sets 
out the deliverable D5.1 “Constraints and opportunities definition”. 
 

2.  High-level Description of the Objectives 
 
We first provide an overall context by presenting the objectives of this work package and how 
these objectives contribute to the CONVOLVE objectives. 
 

2.1.  WP Objectives 
 
The objectives of WP5 are as follows:  
 

• Empower domain and hardware experts to build tailored deep-learning compiler  
 

Reaching peak-performance requires the experience of application and hardware 
experts as input for optimizing the code. Hence, we will reduce the barrier between 
experts and compilers through a novel grey-box compiler experience where domain and 
hardware experts are placed in control of the lowering of their programs. As part of this 
grey-box compiler experience, we will analyse pre-existing deep learning compiler stacks 
and make it easier for domain-experts to interact with and modify these stacks. The 
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stacks and locations at which we ‘grey-box’ them will be strongly influenced by the input 
of the CONVOLVE experts.  
 

• Improve our understanding of the CONVOLVE applications and hardware, also in tandem  
We will offer tooling and analysis of the CONVOLVE applications (e.g., automatic static 
and dynamic analysis) to get a good understanding of both the CONVOLVE applications as 
well as the effectiveness of their hardware mapping.  To gain this understanding, we will 
develop tailored analyses for the CONVOLVE applications and will offer the ability to 
connect hardware analysis tools to analyse the execution of applications on CONVOLVE 
hardware. We will also contribute towards the actual analysis of the CONVOLVE 
applications.  
 

• Support domain to hardware mapping with automation  
 

The compiler technology has the ability to automate the optimization of programs. We 
will analyse the set of optimizations that domain-experts apply manually and offer 
technology and tooling to support this process through automation. One of these areas 
of automation is the exploration of the design space of potential accelerator mapping 
strategies. One key technology in this space will be peephole optimizations, which can be 
defined by experts and which we will then automatically apply and search. Additionally, 
we will investigate optimizations that can be performed automatically by the compiler but 
would be too cumbersome to apply manually.  
 

• Optimally use pre-existing software stacks (e.g., MLIR, Dory, …)  
 

Deep learning compiler stacks are numerous, many are particularly strong in certain 
areas, and often an entire set of tools is needed when mapping from an application to 
hardware. We aim to embrace this ecosystem, reuse code as much as possible, and also 
identify and minimize the impedance mismatches between existing systems, e.g., 
established deep learning stacks are well-optimized for DNN to CPU/GPU compilation yet 
lack support for many custom accelerators. Yet, ETH and others have excellent software 
stacks tailored to their hardware, but they are not connected to latest software stacks 
(e.g., MLIR). We will use our expertise to reduce this gap and offer compilation support for 
CONVOLVE. 
 

2.2. WP Contribution to CONVOLVE’S Objectives 
 
The compiler work package WP5 provides the glue that connects the CONVOLVE neural network 
domain and hardware experts and it is critically important to enable the CONVOLVE objectives.  
 

• 10x faster code   
 

By offering a grey-box compiler experience, where domain and hardware experts take an 
active part in optimizing their applications, our compiler enables the use of optimizations 
tailored for the specific application and hardware combinations relevant to CONVOLVE. 



D5.1 Constraints and opportunities definition 

Grant Agreement 101070374                     Page  
|  8 

 

Such optimizations are not limited by generic compiler optimization passes but can be as 
good as hand-optimized code. In addition, our support for analysing the neural networks 
and their (predicted) performance on the CONVOLVE hardware will empower our experts 
to take better accelerator mapping decisions. As a result, we can choose between the 
best of two worlds – automation through compile-time optimizations and mapping and 
peak-performance offered by the expert-knowledge available from our CONVOLVE 
partners.  
 

• Optimizations and compilation flow to fully leverage the accelerators  
 

We fully leverage the accelerators and hardware in CONVOLVE by embracing existing 
technology, evolving and rethinking it in the light of latest research results around MLIR, 
and considering the pre-existing technology stacks in the CONVOLVE team. We also offer 
optimizations, by increasing the level of automation in the hardware mapping workflow.   
 

• Infrastructure for Machine Learning engineers to estimate efficiency of NNs  
 

Our work on understanding of the CONVOLVE applications in the context of the 
CONVOLVE hardware provides static analysis that offer insights that are hard to reason 
about manually. Thanks to the Grey-box compiler we develop, these insights will be 
presented in the exact context of the NNs as they are mapped to the accelerators, such 
that machine learning engineers can take action based on this feedback. 
 

3.  State of the Art in the Neural Networks Compilation Flows 
 
We first give an overview of existing frameworks for compiling deep neural networks and 
subsequently discuss the roadblocks for using them in CONVOLVE. 
 

3.1.  Frameworks 
 
Before we dive deeper into the design of our compiler stack, let us briefly introduce relevant 
background. We introduce the common tools employed in compiling NNs. 
 

3.1.1.  MLIR 
 
MLIR (https://mlir.llvm.org/) is a framework to build compiler IRs (Intermediate Representation).  
MLIR allows one to define their own set of operations, own type system and benefit from pass 
management, diagnostics, multi-threading, serialization/deserialization, etc. MLIR does this in 
form of a dialect, where a dialect is a group of operations defined by the user together with their 
type system. Dialects allow the user to write optimisations at the most relevant level of 
abstraction. They can also be interleaved with each other. 
By using MLIR, we can decouple the teams working on different parts of the compiler. The experts 
in neural network optimisation can write the optimisations at a high level of abstraction, and the 
experts in accelerator utilisation can write optimisations at a lower level. 

https://mlir.llvm.org/
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Using a single framework for the different levels of abstraction lets us write analyses that work 
throughout the compilation phases. For example, for the estimates of energy use of a given 
neural network, we can compile it down using the various dialects in MLIR. We can then propagate 
the energy use of single instructions in the output backwards, annotating the higher-level 
instructions with aggregate energy use. Similarly for cycle counts, etc. 
 

3.1.2. PyTorch 
 
PyTorch (pytorch.org), a widely used framework to express deep neural networks in Python, will 
be used as input to our compilation flow. Several of the use cases our application partners 
provided are available as PyTorch implementations. The dynamic and extensible architecture of 
PyTorch that made it popular for machine learning research is particularly suitable for CONVOLVE 
use-cases. 
 
In addition to the PyTorch input file, we will also require an example input to derive tensor shape 
information (e.g., run shape inference), which is necessary to fully specify the pipeline. 
 

3.1.3. Torch-MLIR 
 
The Torch-MLIR (https://github.com/llvm/torch-mlir) project acts as a bridge between PyTorch 
and MLIR. It aims to provide first class compiler support from the PyTorch ecosystem to the MLIR 
ecosystem. It provides an MLIR dialect, lowerings to operations built into the MLIR framework. By 
leveraging the work already done by that open-source community, we can get started quickly 
optimising and analysing the neural networks that have been proposed for the CONVOLVE use-
cases.   
 

3.1.4. TorchScript 
 
TorchScript is a machine readable and structured serialization format for PyTorch and serves as 
connection layer between PyTorch and the MLIR dialects. TorchScript and the conversion from 
PyTorch to TorchScript is maintained by the PyTorch project. Hence, we can rely on it as well-
documented, complete, and stable component of our infrastructure. The conversion between 
Torch and TorchScript also does not involve complex semantic changes, which means we do not 
risk to lose information by relying on TorchScript. Finally, TorchScript is recognized as an 
interfacing abstraction between PyTorch and MLIR. In particular, the Torch-MLIR project imports 
TorchScript and translates it into an MLIR TorchScript dialect, at which level we can convert 
TorchScript into any MLIR dialect using standard MLIR transformations. Torch-MLIR also 
performs static analyses such as shape inference, data type inference and value semantics 
maximization is performed, that are necessary for effective code generation further down the 
pipeline.  Torch-MLIR offers itself a translation from TorchScript into MLIR’s linear algebra 
abstraction (LinAlg), which we use as a next step in our pipeline. 
 

3.1.5. LinAlg (on Tensors and Buffers) 
 

https://github.com/llvm/torch-mlir
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We use MLIR’s linear algebra dialect LinAlg (https://mlir.llvm.org/docs/Dialects/Linalg/) as the 
high-level representation of tensor computations. LinAlg is a core MLIR dialect that implements 
a structured abstraction of linear algebra operations on both tensors and buffers.  Tensors in 
LinAlg have value semantics, which means they are newly created by operations and afterwards 
remain read-only. Buffers on the other side are multi-dimensional memory objects which can be 
modified in place. LinAlg defines various linear algebra operations over tensors (or the 
corresponding buffers), yet it also offers a generalization of such operations with its 
`linalg.generic`. The `linalg.generic` operation1 can express a family of custom operations, where 
the elementwise computation is arbitrary user-defined scalar arithmetic and the overall 
structure of the operation matches the general structure of a linear algebra operation. 
 
When translating LinAlg to hardware, two variants of the LinAlg dialect are used. First, LinAlg over 
tensors is used as a convenient interface to higher-level abstractions which typically are closer 
to mathematical notation where in-place modifications are typically avoided for clarity. Second, 
LinAlg is translated to operate on buffers (so-called memrefs), by running a bufferization pass. 
The bufferization pass will decide on memory allocation and reuse and brings LinAlg closer to the 
explicit memory management that code running on actual hardware typically requires. Finally, 
LinAlg lowers to structured control flow consisting explicit loops, arithmetic operations, as well 
as loads and stores to memory. 
 

3.1.6. Loops(Affine/SCF) 
 
This level represents explicit memory access and loops as a dialect. Affine dialect restricts loops 
and the memory access inside to be affine in nature. The SCF (Structured Control Flow) dialect 
allows for more general loops. Affine is a subset of SCF and can be lowered to SCF. 
 
These dialects further lower to LLVM. 
 

3.1.7. LLVM 
 
LLVM (llvm.org) is an open-source compiler framework widely used in the industry. It has a big 
community, adding optimisations at many stages of its own pipeline. We aim to leverage both 
MLIR and LLVM for optimisations specific to the CONVOLVE project, in addition to benefiting 
from the existing optimisations “for free”.  

 
The MLIR project is a part of the LLVM project, and leverages LLVM as the final stage of the 
compilation. LLVM code generation is available for many architectures, including RISC-V. 
 

3.1.8. RISC-V 
 
RISC-V (riscv.org) is an open standard Instruction Set Architecture (ISA), that is designed to be 
extensible. The ISA makes it easy to add instructions to leverage novel accelerators and has a 
small and relatively simple core set of instructions, making it an attractive target for compilation. 
We use the LLVM code generation framework to generate RISC-V code. 
 

https://mlir.llvm.org/docs/Dialects/Linalg/
http://llvm.org/
https://riscv.org/
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3.2. Neural Networks Deployment 
 
Many different approaches exist to deploy various types of neural networks across various flows. 
Typically, two flows are supported for neural network programs: 
Training (+ inference) => in = NN graph, Dataset , Out => Weights, Prediction 
Inference            => in = NN graph, Input data, Weights, Out => Prediction 
Typically, hardware acceleration of kernels in these approaches is achieved by: 

• Handwriting the entire application (not scalable) 
• Using hardware-specific hand-optimized kernel libraries called by a runtime system (E.g. 

using CuDNN for NVIDIA GPUs in PyTorch, or CMSIS-NN on ARM-uControllers) 
• Using hardware-specific parametrizable kernel libraries that can be specialized by 

template expansion and which are run on a runtime (E.g. CUTLASS for NVIDIA, or Dory for 
GAP8) 

• Full-blown automatic kernel library generation (E.g. TVM Autotuning, 
TensorComprehensions) 

 
Runtimes typically support two modes of operation: 

• Static graph execution: The NN graph is parsed ahead-of-time and the entire network 
execution is planned (cfr. Classic Tensorflow). This allows for thorough compiler 
optimization, but does not allow for the execution of dynamic neural networks. 

• Dynamic graph execution: The NN graph is parsed at runtime (which can entail a high 
runtime overhead) and optimized kernels are called at runtime (cfr.PyTorch, Tensorflow 
Eager mode). Some parts of the kernels can also be deferred to the runtime phase (e.g., 
dynamic shapes). This complicates optimization. 

 
In an edge/embedded-deployment one typically must account for: 

• Low memory: DRAM accesses can be energy-hungry. To increase the energy efficiency, 
one must place as much of the program as possible, including interfacing and weights 
storage, onto on-chip SRAM. This also entails that one needs to quantize one's workloads, 
as lower precision data requires less storage. 

• None or very limited (RT)OS support. Typically, there is no support for virtual memory, 
multithreaded execution, nor all C standard library components. Performing RPC (Remote 
Procedure Calls) (necessary for autotuning) on such a device can be challenging. 

• No hardware caches. Memories are implemented as scratchpads which require explicit 
memory movement by the programmer/compiler. 

• Limited support for C libraries. Typical microcontrollers interface with various hardware 
components through a myriad of libraries, typically implemented in C. For this, some 
tools, such as (micro)TVM for example, can emit C code. 

 
3.3. Neural Networks Optimizations 

 
Compile-time optimizations for neural networks involve techniques that are applied during the 
compilation of neural network models, with the goal of improving their efficiency and 
performance. Below are a few examples. 
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3.3.1. Quantization 
 
This technique involves representing the weights and activations of a neural network with a 
reduced number of bits (e.g., 8 bits instead of 32 bits) to reduce memory usage and increase 
computational efficiency. This can be done during the compilation process.  
  
There are several challenges associated with quantization for edge devices. One of the main 
challenges is to find the right balance between reducing the precision of the weights and 
activations and maintaining the accuracy of the network. In some cases, reducing the precision 
too much can lead to a significant drop in accuracy, particularly for complex networks.  
  
Another challenge is to ensure that the quantization process does not introduce too much noise 
or distortion into the network. This can be particularly important for applications such as 
computer vision or speech recognition, where small changes in the input data can have a 
significant impact on the output.  
  
To determine the optimal level of quantization, it is common to perform a sensitivity analysis on 
a representative subset of the training data, measuring the network's accuracy for different 
quantization levels. This can help identify the optimal quantization level that achieves the desired 
accuracy while minimizing memory and computational requirements.  
  
For Quantization we can make use of the QuantLab framework, which allows for arbitrary 
quantization support and exports to Dory, which is compatible with custom ONNX files. It also 
supports Post Training Quantization (PTQ) and Quantization Aware Training (QAT). Additionally, 
the framework supports several quantization schemes, including PACT, Bayesian Bits, PROFIT, 
STE, and Additive Noise Annealing (ANA) [1]. 
 

3.3.2. Layout Optimizations 
 
The layout of the data used by neural networks can affect their performance. By optimizing the 
layout of data in memory, neural network computations can be made more efficient. For example, 
data can be arranged in memory to ensure that it is stored in contiguous blocks, which can reduce 
memory access time. 
 
The reason for this is that modern processors have a hierarchy of memory caches that store 
recently accessed data to reduce the time needed to fetch data from main memory. When 
accessing data that is stored contiguously in memory, the cache can prefetch data and reduce 
the likelihood of cache misses. Cache misses can be expensive as they require the processor to 
access slower memory, such as main memory or disk storage. 
Therefore, it is crucial to optimize the data storage layout in DNNs to minimize cache access 
penalties. This can be achieved by using memory allocation techniques that promote data 
locality, such as allocating memory in a contiguous block, reordering the dimensions of the data 
to maximize cache reuse, and using specialized data structures optimized for cache 
performance. 
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3.3.3. Pruning 
 
Pruning involves removing unnecessary connections and weights in a neural network to reduce 
its size and improve its efficiency. Pruning can be done during the compilation process by 
identifying and removing redundant connections and weights that don't contribute significantly 
to the network's performance. 
 
There are several methods for determining which connections in a neural network should be 
pruned. One method is weight magnitude-based pruning, where small weights are removed 
based on their magnitude, assuming they have a negligible impact on performance. Another 
approach is activation-based pruning, where neurons are ranked by importance and those with 
the smallest impact on the network's output are removed. Structured pruning involves removing 
entire neurons or groups of neurons. Reinforcement learning-based pruning trains an agent to 
identify connections that can be pruned while minimizing the impact on performance. A 
combination of these methods may be used, with trial-and-error needed to determine the 
optimal strategy, since effectiveness can depend on the network architecture and dataset used. 
 

3.3.4. Multithreading 
 
Multithreading involves dividing the computation of a neural network across multiple processors 
or devices. By distributing the computation across multiple devices, the overall computation 
time can be reduced. This can be done during the compilation process by identifying 
opportunities for parallelism in the neural network computation. 
 

3.3.5. Transformation 
 
DNN calculation can sometimes be further sped up by applying computational transformations 
to the data to reduce the number of (typically expensive) multiplications, while still delivering the 
same bit-wise result. The objective is to improve performance or reduce energy consumption 
although this can come at the cost of more intermediate results, an increased number of 
additions, and a more irregular data access pattern. One such example is the Winograd's 
algorithm. 
 

3.4. Kernel Optimizations 
 
Data in a given input space is transformed to another space using kernel functions. One can think 
of neural network layers as non-linear maps doing these transformations, i.e. kernels. Kernel 
optimization is a technique used in neural networks to improve their performance and efficiency 
by optimizing the computation of layers, which are one of the key building blocks of neural 
networks. There are different types of kernel optimization techniques. Below are a few examples. 
 

3.4.1. Tiling 
 
Convolutional neural networks (CNNs) commonly involve an inner-product computation that 
multiplies a filter matrix with an input feature map. To optimize this computation, it is often 
ordered to ensure reuse of elements of the filter matrix, which can be limited by the size of 
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available memory. Tiling and blocking are techniques developed to address this issue by dividing 
the input feature map and filter matrix into smaller tiles or blocks that fit in memory and allow for 
better element reuse. Parallelizing tiling involves distributing tiles across multiple compute units, 
such as CPU cores or GPUs, to improve overall performance. 

   
Tiling can also be combined with other optimization techniques, such as loop unrolling and 
memory blocking, and can be automated through the use of polyhedral models and SAT solvers 
in compiler frameworks like LLVM and GCC. The polyhedral model maps computations to a multi-
dimensional space to analyse and optimize loop nests and memory access patterns. The SAT 
solver generates an optimal tiling and scheduling strategy to minimize memory access overheads 
and maximize computational efficiency. This approach has shown significant improvements in 
performance and energy efficiency in various applications, including image processing, machine 
learning, and scientific simulations. 
 

3.4.2. Operator Fusion 
 
Operator fusion is a technique that groups together multiple operations in a deep learning model 
into one fused operator-group, represented as a directed acyclic graph (DAG). This grouping 
reduces the amount of memory needed to store intermediate feature maps, which can be a 
significant bottleneck in deep learning accelerators. State-of-the-art deep neural networks 
(DNNs) have many parameters and large feature maps that cannot fit in the memory of small 
devices such as IoT and edge devices. Hence, these DNNs need to access memory located 
outside the device (called off-chip memory), which is slower and energy expensive. In fact, 
accessing off-chip memory is often the slowest and most energy-consuming part of running 
DNNs on edge devices, and can limit the speed at which they can operate.  

 
Within a fused operator-group, intermediate feature maps can be consumed immediately after 
being produced by scheduling in advance the corresponding operations of the consuming 
operators. This reduces the need to evict the intermediate feature maps to off-chip memory and 
re-load them from main memory before starting the next operation. This process can be repeated 
for each fused operator-group, thereby reducing the amount of data movement between on-chip 
and off-chip memory. By reducing the amount of memory accesses needed for intermediate 
feature maps, the operator fusion technique can significantly improve the performance of deep 
learning accelerators and reduce the memory access overhead. This technique is especially 
useful for existing deep learning accelerators that have limited memory resources and can result 
in significant improvements in energy efficiency, execution time, and performance. 
 

3.5. Optimization Frameworks 
 
Optimization frameworks in neural networks are tools that enable efficient and effective 
implementation of neural networks. They focus on optimizing the performance of neural network 
models, making them faster and more accurate, while minimizing resource consumption. Below 
are brief explanations of some optimization frameworks with examples: 
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3.5.1. Halide for High-Performance Image and Signal Processing 
 
Halide is a domain-specific language and compiler that is designed to make it easier for 
developers to write high-performance image and signal processing applications. One of the key 
features of Halide is its separation of the algorithm specification from the scheduling and 
optimization of the computation. 
 
In Halide, the user writes the algorithm as a sequence of pure functions that operate on multi-
dimensional arrays. These pure functions describe the computation in a way that is independent 
of any particular schedule or tiling strategy. The user then provides separate annotations that 
describe how the computation should be scheduled and optimized, such as loop unrolling, loop 
tiling, and vectorization. 
 
The Halide compiler then uses this information to automatically generate efficient code that is 
optimized for the target hardware. The compiler uses a number of advanced optimization 
techniques, such as polyhedral optimization and automatic parallelization, to generate code that 
is both correct and fast. 
 
By decoupling the basic expressions of the algorithm from the scheduling and optimization 
strategies, Halide makes it easier for developers to write high-performance image and signal 
processing applications without having to worry about the low-level details of optimization. The 
approach used by Halide is similar to other high-level programming languages and frameworks, 
such as TensorFlow and PyTorch, which provide abstractions that allow developers to focus on 
the high-level logic of the algorithm without worrying about the low-level details of hardware 
optimization. 
 

3.5.2. Tensor Virtual Machine (TVM) 
 
TVM is a powerful tool for optimizing and deploying deep learning models on a wide range of 
hardware platforms. One of the key features of TVM is its ability to expose graph-level and 
operator-level optimizations for DNN (Deep Neural Network) workloads across diverse hardware 
back-ends. TVM supports a wide range of optimization techniques, including operator fusion, 
tiling, and memory hierarchy management. Operator fusion involves combining multiple 
operators into a single kernel, which can reduce memory bandwidth and improve cache 
utilization. Tiling involves partitioning the input and output tensors into smaller tiles, which can 
reduce memory latency and improve data locality. Memory hierarchy management involves 
managing the movement of data between different levels of memory, such as between cache and 
main memory. Aside from these techniques, TVM uses two representations to optimize DNN 
workloads: Relay and TensorIR. Relay is a high-level neural-network-layer representation that 
can automatically generate kernels based on this representation. At the Relay level, TVM can fuse 
operations to improve runtime and reduce memory overhead. TensorIR is a low-level loop-based 
representation that can be emitted as LLVM IR for use on GPUs or as C code for microTVM 
(embedded) deployments. 
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TVM's main optimization strategy uses the Halide functional programming language, which allows 
for splitting up loop-computations and matching them to multiple threads or SIMD instructions. 
Halide uses the equivalence principle inherent to functional programming to propose many valid 
computational schedules that can optimize for SIMD-instructions or hardware caches by treating 
the optimization of schedules. These schedules can be measured for runtime on the hardware, 
which can optimize the compiler output (= Autotuning). However, the search space for this 
autotuning problem is defined by the optimization knobs exposed in TVM’s tensorIR recipes 
(TOPI), which requires expert knowledge for proper autotuning. The halide model also treats 
temporal and spatial loop splitting separately, while polyhedral optimization treats them jointly. 
One limitation of the halide model is that it does not allow for side-effects, which is typical in 
explicitly managed scratchpad memories. An extension to Halide called Exo solves this problem 
by employing an SMT solver to prove equivalence and enable side-effects and thus for explicit 
memory transfers. 
Overall, TVM's optimization techniques and support for a wide range of hardware back-ends make 
it a valuable tool for researchers and developers working in the field of deep learning. 
 

3.5.3. Tensor Comprehensions 
 
Tensor Comprehensions (TC) [2] is a framework agnostic library to automatically synthesize high-
performance machine learning kernels. The compilation flow combines Halide and a Polyhedral 
Compiler derived from ISL and uses both HalideIR and the ISL schedule-tree IR. The compiler 
provides a collection of polyhedral compilation algorithms to perform fusion and favor multi-level 
parallelism and promotion to deeper levels of the memory hierarchy. TC showed that, fixing a few 
predefined strategies with parametric transformations and tuning knobs, can already provide 
great results. In that previous work, simple genetic search combined with an autotuning 
framework was sufficient to find good implementations in the non-compute bound regime. This 
requires code versions obtainable by the various transformations to encompass versions that get 
close to the roofline limit. The ultimate goal of TC was to concretely mix Halide high-level 
transformations with polyhedral mid-level transformations and build a pragmatic system that 
could take advantage of both styles of compilation. 
 

3.5.4. Dory 
 
The DORY framework by Burrello et al [3] uses C library templates to drive a cluster of 8 RISC-V 
cores (an L2 accelerator) and coordinating tiling for optimized memory transfer. The optimized 
library used is XPULP-NN [4]  (open-sourced here). 
Tiling can in this case split up bigger layers in smaller ones that can still be executed on smaller 
memory accelerator devices, as long as the top-level memory hierarchy is large enough to store 
the entire operations operands. This tiling strategy is kernel-specific, and can use hardware 
specific heuristics to optimize tiling for specific hardware. 
The tiling is then formulated as a constraint programming problem that is solved by OR-Tools. 
In the end, Dory generates C code that runs an entire neural network with explicit memory 
transfers that can be passed on to a specialized C compiler. 
 
Dory’s features: 

https://mlir.llvm.org/docs/Rationale/RationaleLinalgDialect/#lessonshalide
https://en.wikipedia.org/wiki/Integer_set_library
https://github.com/pulp-platform/pulp-nn
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• Parametrizable library and runtime 
• Does static explicit scratchpad memory planning (3-level = DRAM, L2, L1) 
• Supported by PULP-NN based library for PULP-CLUSTER = RISC-V based cluster 
• Uses constraint programming (OR-tools to perform optimal memory planning) with 

memory constraints, layer-specific tiling patterns and hardware-specific 
 

3.5.5. OpenXLA : StableHLO, XLO, IREE 
 
The OpenXLA project is an ecosystem of ML compiler blocks. The project includes: 
 

• StableHLO: StableHLO is an operation set for high-level operations (HLO) in ML models. 
Essentially, it’s a portability layer between different ML frameworks and ML compilers. IT 
acts as a common, stable IR for ML frontends to lower to. StableHLO is based on 
Tensorflow’s MHLO IR with additional functionality including serialization and versioning. 
The IR aims to provide backward and forward compatibility guarantees. 

• XLA: XLA (Accelerated linear Algebra) is an open-source ML compiler for GPUs, CPUs and 
ML accelerators. The XLA compiler takes models from popular ML frameworks such as 
PyTorch, Tensorflow, and JAX and optimizes them for high-performance execution 
across different hardware platforms. 

• IREE: IREE (Intermediate Representation Execution Environment) is an MLIR-based end-
to-end compiler and runtime that lowers ML models to a unified IR that scales up to meet 
the needs of the datacentre and down to satisfy the constraints and special 
considerations of mobile and edge deployments. 

 
3.6. Security in Compilation 

 
Compilers convert a program from one representation to a different one while maintaining 
functional equivalence. In general, this equivalence is only roughly specified which enables the 
compiler to modify and optimize the generated code. Such optimizations usually target the 
execution time or the program size and are crucial to achieve reasonable or high performance in 
practical applications. However, the aspect of security is typically neglected. Common 
programming languages do not offer ways to convey security notions to the compiler which are 
then preserved during compilation. Even worse, security properties of handcrafted high-level 
code may be inadvertently lost during compilation because they conflict with the optimization 
goals. The most prominent security vulnerabilities introduced by compilers are timing and power 
side channels. 
 

3.6.1. Side-Channel Attacks and State-of-the-Art Countermeasures 
 
An attacker with physical access to the device can measure the power consumption of the chip 
and use it to deduce information about secret values such as cryptographic keys. Several attacks 
with varying complexities have been proposed in the literature. In a simple case, the power 
consumption varies based on the execution path of the program. In more complex settings, it 
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suffices for an instruction to require less energy for some operands than for others, and the 
secret values can be recovered. 

 
Alternatively, the execution time of (or parts of) a program may also be exploited by an adversary 
to steal sensitive data. The canonical example is a branching instruction based on the bits of a 
secret value, but there are much more advanced attacks involving the memory access times for 
some addresses or the execution times of individual instructions. 

 
Both of these have been placed into new prominence by the emergence of enclave technology. 
While enclaves, such as Intel SGX and Arm Trustzone, prevent access to secrets within the 
enclave, even by the operating-system kernel, side-channel attacks are considered out-of-scope 
for the hardware, and so maintaining secrecy becomes a software, and ultimately, full-compiler-
stack problem. To exacerbate the problem further, transient execution attacks including Spectre 
(https://meltdownattack.com/) have dramatically extended the attack surface, not just from 
timing side channels within existing code, but any code that could be speculatively executed by 
the hardware in order to improve performance. This causes a dual challenge: not only must all 
paths that timing-sensitive code could execute, even speculatively, also be constant time, but 
also, no time-variant code paths may be allowed to access secret values, even down 
misspeculated paths. 
 
The state-of-the-art countermeasure to prevent power side-channel attacks is masking. There 
exist several variants such as Boolean or arithmetic masking, which are optimized for different 
use cases. The underlying idea is the same: the processed values are homomorphically 
transformed to a masked domain (also called sharing) and the algorithm operates on the 
transformed data. The most common approach is to use Boolean sharing where a secret value x 
is split up into s shares such that x = x0 ^ x1 ^ ... ^ xs-1  (where ^ is the exclusive OR operator). The 
desired protection against power side-channel attacks is achieved by selecting s-1 shares 
uniformly at random. Other approaches use arithmetic sharing where the exclusive OR is replaced 
by additions or multiplications. However, in order to process the shared secret values, the target 
algorithm needs to be adapted as well. In general, masking linear functions is straightforward 
while masking non-linear functions is more challenging.  Nevertheless, the output of the masked 
algorithm is transformed back to obtain the actual result. However, masking is often applied 
manually to software and hardware implementations. In both cases, it is indispensable to verify 
that the synthesizer or the compiler does not invalidate any of the security properties in order to 
improve performance. 
 
Timing side channels can be evaded by adhering to the constant time programming paradigm. 
Analogously to masking, it is essential to verify that the compilation procedure retained all 
constant time properties. Alternatively, a DSL in combination with a designated compiler (e.g. 
FaCT) may be used. In such cases, the constant-time properties can be specified directly in the 
source code and are (formally) verified to hold for the compiled LLVM bitcode as well. However, 
such DSLs are constrained and not suitable for general application development. In general-
purpose compilers, such annotations must be hacked into the IR by, for example, reinterpreting 
them as pseudo instructions with side effects (https://llvm.org/devmtg/2019-04/slides/SRC-
TuanVu-Compilation_and_optimization_with_security_annotations.pdf), and properties 

https://meltdownattack.com/
https://llvm.org/devmtg/2019-04/slides/SRC-TuanVu-Compilation_and_optimization_with_security_annotations.pdf
https://llvm.org/devmtg/2019-04/slides/SRC-TuanVu-Compilation_and_optimization_with_security_annotations.pdf
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generated and verified in the compiler’s middle end (https://github.com/lac-dcc/lif) are often 
broken in the backend instruction selection, such as select instructions becoming branches in 
LLVM’s RISC-V backend. In hardware, even the latest enclave technologies do not provide innate 
side-channel resistance: Arm’s CCA technology (https://haspworkshop.org/2021/slides/HASP-
2021-Session2-Arm-CCA.pdf ) gives software running inside the enclave “the tools to protect 
itself" but no guarantees in hardware, meaning the property is almost entirely devolved to the 
software stack. 
 
Spectre adds a new dimension to the defences required: not only must code that handles 
sensitive data be constant-time, but no other time-variant code may access the data, even 
speculatively, if it is to be secure. Compiler techniques for automatically inserting barriers are 
currently insecure, low-performance, or both [5]. Barrier mitigations have been added to the 
Linux kernel by hand (https://www.kernel.org/doc/html/latest/admin-guide/hw-
vuln/spectre.html) to protect against kernel-specific vulnerabilities, but these are not the direct 
threat model for enclaves, where the vulnerability is in user code, and the approach currently 
used to decide where to place barriers is ad hoc and prone to error. Hardware solutions for 
comprehensive protection, such as Speculative Taint Tracking [6], see too high overheads for 
deployment. Codesign methods, that reorder instructions based on the limitations enforced in 
hardware [7] show promise but have not been examined against the strongest threat models [8] 
and still leave performance on the table relative to today’s unsafe baselines. 
 

3.6.2. Reverse Engineering 
 
In general, reverse engineering refers to the process of analysing a product or system to 
understand its design, function, or components. In the context of artificial intelligence, reverse 
engineering2 can be used to extract information about the inner workings and design of a neural 
network model. 
 
One common method of reverse engineering neural networks can be the teacher-student 
method. In this approach, a large, complex neural network (the teacher) is trained on a dataset, 
and then a smaller, simpler neural network (the student) is trained to mimic the behaviour of the 
teacher network. By examining the output of the student network, an attacker can gain insights 
into the inner workings of the teacher network, potentially revealing proprietary information 
about the model's architecture or training data. 
 
To prevent reverse engineering through the teacher-student method, one approach is to 
introduce noise or other markers to the output of the student network, making it more difficult 
for an attacker to discern useful information. Another approach is to use adversarial training, in 
which the student network is trained to resist attempts at reverse engineering by introducing 
deliberate misdirection or obfuscation. 
 
An additional method of reverse engineering neural networks can be through the analysis of their 
output alone, without knowledge of the underlying architecture or training data. For example, an 
attacker might input a series of carefully constructed test cases to the network and analyse its 
responses to infer information about its internal structure or decision-making process. 

https://github.com/lac-dcc/lif
https://haspworkshop.org/2021/slides/HASP-2021-Session2-Arm-CCA.pdf
https://haspworkshop.org/2021/slides/HASP-2021-Session2-Arm-CCA.pdf
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
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To mitigate this special type of reverse engineering, one approach could be to introduce 
watermarking3 into the output of the neural network. Watermarking involves adding a small, non-
noticeable signal to the output of the network that can be used to identify the source of the 
output. This can deter attackers from attempting to reverse engineer the network, as the 
presence of the watermark can reveal the actions of the attacker. 
 

3.6.3. Secure Compilation in CONVOLVE 
 
Within CONVOLVE there are three different "types" of compilation. First, the applications (i.e., 
neural networks) need to be compiled with an utmost focus on high performance as well as low 
latency and power consumption. For this compilation type, side channels are not considered 
since they directly oppose all aforementioned optimization goals. Second, the relevant crypto-
accelerators need to be devised, implemented, and ultimately compiled in a side-channel 
resistant manner. However, this is done only once and ahead of time. The final accelerator can 
then be seen as a secure enclave ("TEE") with a minimal interface. If the application needs to 
perform a cryptographic operation, it can be delegated to the corresponding accelerator which 
executes it securely. Third, the application needs to perform cryptographic or time-sensitive 
operations for which no (or only partial) accelerators are available, for example verifying a pin 
sequence or password without revealing timing information about how many characters are 
correct, potentially in an enclave where even the operating system should not be leaked this 
information. In the latter case, the application logic needs to be segregated from the 
cryptographic logic. The former can and should be optimized independently of any side-channel 
considerations. The latter must be programmed and compiled in a side-channel secure way, 
guaranteed end-to-end throughout the compilation flow such that properties verified in the 
language level cannot be violated by the compiler’s middle end, and properties verified in the 
middle end cannot be violated by instruction selection or the choice of microarchitecture, 
including forms of speculation introduced by the target microarchitecture. In practice, this 
depends on the security goals and entails adhering to the constant time programming paradigm, 
masking the relevant code, verifying the object file or using a DSL with a designated compiler. 

 
These will allow separation of duties: if a region of code has no timing-side-channel constraint 
applied to it, then it can be optimized to the maximum allowed. If it has a constraint in place, then 
code can still be optimized, but only in a way that preserves or even generates timing invariance, 
and only ever emits code at the backend that is guaranteed secure, since the constraint cannot 
be thrown away by any compiler pass. For running code, in enclaves or otherwise, while 
maintaining secrecy even with Spectre vulnerabilities, we will consider mechanisms for code 
reordering [7], potentially adding new hardware restriction mechanisms to allow high-
performance defence against the strongest threat models. Our code reorderings, encoding 
concepts of multiple independent regions of speculation, will restore the memory-level 
parallelism that threatens to be destroyed unless safe techniques can be developed. 
 

4. High-level Description of the Target Architecture and its Accelerators 
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We first describe the PULP (Parallel Ultra Low Power) platform and then describe the proposed 
accelerator interface and different possible accelerator designs. 
 

4.1. The PULP platform 
 
The PULP platform (project website, github) is an open-source platform between ETH Zurich and 
University of Bologna which develops open, scalable RISC-V based hardware and software with a 
focus on energy efficiency. The project has developed a variety of open-source RISC-V processor 
cores, peripherals and further IPs needed to design complete System-on-Chips (SoCs). In the 
CONVOLVE project many of the PULP IPs will be used and extended by various partners to design 
a heterogeneous and modular System-on-Chip (SoC) with specialized new accelerators. 

 
The open-source project offers already many relevant hardware and software blocks and makes 
heavy use of the open-source instruction set architecture (ISA) RISC-V. The available IPs include 
a variety of RISC-V cores, from fully Linux-capable devices to low-power microcontroller cores. 
Within their research efforts, they have implemented a variety of RISC-V ISA extensions (XpulpV1, 
and XpulpV2) which reduce the overall cycle count of the program and increase overall energy 
efficiency – even neural network specific ones have been designed called (XpulpNN). The 
extended instructions include for example hardware loops, post-increment loads and stores, and 
packed-SIMD dot-product operations. These extensions are supported in custom LLVM 
backends and GCC compiler suites through automatic optimization and built-in functions. 

 
To aid in the development of software on these platforms, PULP also has open-source 
simulators. The C++-based GVSoC simulator [9] supports running semi-cycle accurate 
simulations (up until 90% accurate) of PULP based systems at a much faster rate than typical 
RTL-level simulations. The (non-cycle-accurate but instruction-accurate) Rust-based Banshee 
simulator [10] was developed to make quick software verification possible for scaled-up 
manycore systems. 

 
The PULP Platform has also developed a software stack to train, tile and deploy quantized neural 
networks (QNNs) onto their systems. An overview is given (Figure 2) and includes QuantLab and Dory 
which are discussed in Section 2.3.1 and 2.5.4 and PULP-NN, a C library with optimized neural 
network (NN) primitives exploiting for example the XpulpNN ISA extensions. 

https://pulp-platform.org/
https://github.com/pulp-platform
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                       FIGURE 2. THE PULP PLATFORM SOFTWARE STACK TO TRAIN, TILE AND DEPLOY QNNS ON PULP SYSTEMS. 

 
4.2. Programming Interface 

 
All the accelerators proposed in CONVOLVE are accessible through different levels of memory. 
They are compared in the table (table 1). 
 

TABLE 1. COMPARISON OF ACCELERATORS AT DIFFERENT MEMORY LEVELS IN CONVOLVE. 

 L0 accelerator L1 accelerator L2 accelerator 

Hardware 
Implementation 

      Accelerator which 
acts as a RISC-V co-
processor and is 
integrated into a 
cores datapath over 
the core-v-xif 
interface. 
 

Accelerator that 
shares an integrated 
multi-banked tightly-
coupled data 
memory (TCDM) with 
RISC-V cores. An 
asynchronous direct 
memory access 
(DMA) unit brings in 
data from a main 
memory. 

Accelerator that has 
its own memory and 
is accessed over an 
AXI-bus. 

Programming model Custom RISC-V 
extensions must be 
inserted by the 
complier. 

Custom accelerator commands are issued 
over the respective bus (Peripheral or AXI). 
The L1 accelerator over memory-mapped 
registers or the help of a DMA unit. The L1 
accelerator has streamers to fetch data from 
TCDM into the local buffers. The L2 
accelerator potentially uses a DMA to bring 
data from main memory to local memory. 
Interfaces can be custom for each 
accelerator.  
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4.2.1. Accelerators 

 
Within the proposed interface many different accelerator designs in different technologies are 
possible. Some accelerator performance metrics can be found at 
https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/ one can see that an 
off-the-shelf desktop CPU has a very poor energy efficiency at about 0.3415 GOP/s/W for FP16 
workloads. GPUs can better exploit the inherent parallelism in NNs, yielding an energy efficiency 
that is up to two to three orders of magnitude better. FPGAs can specialize even better to NN 
workloads, but suffer from a reconfigurability overhead. ASIC designs significantly outperform all 
other designs, due to the absence of a reconfigurability overhead and more specialized data path, 
data storage, memory hierarchy and interplay between them. 
 
Below (Table 2) are some key differentiators between several design options within the CONVOLVE 
project: 
 

TABLE 2. COMPARISON OF ACCELERATORS WITHIN THE CONVOLVE PROJECT. 
Accelerator 
Technology 
 

Description 
 

Intrinsic Ops 
 

Energy  
eff. 
 

Data types Reliability 

Coarse 
grained 
dense 
accelerators 
 

Standard 
VLSI cells 
ASIC highly 
Optimized 
for NN 
operations 

GEMM, Conv2D, 
Batchnorm, Add 

High Typically, 
Integer 
arithmetic 
can be 
Signed/unsigned. 
Can be 
scalable (int8, 
int4, int2, 
binary) High 
on memory 
traffic 

High, fully digital 

Spiking 
accelerators 
 

Specialized 
datapath 
for 
Spiking 
operations 

Basic weighted 
sum 
operation 

Very high Spikes.  
Binary 
spike and 
bfloat16 for 
synaptic 
weight 

High for 
fully digital 
Implementation, 
Inherently 
resilient for 
nonidealities in 
analog 
implementation 
 

CGRA 
 

CGRA: 
Coarse 
grained 
reconfigu- 
rable array 

Usually very 
flexible, 
tuneable ISA 
(even complex 
operations) 
reconfigurable 
datapath  

Higher 
Than 
FPGA. 
Very high 
If very  
coarse 
grained 

Depends on 
design, 
typically 
int8,16,32  
Smaller data 
types by 
subword 

High if Digital 
CMOS is used. 
Can be  
combined with  
near Vdd,  
Vstacking, 
approx  units,  

https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/
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operati- 
ons are 
included 

parallelism 
(SIMD) 

etc., Introducing 
Reliability/accur- 
acy issues 

SRAM- 
based  
compute  
(Digital) 
 

Standard 
SRAM 
macro 
with 
periphery 
for 
CIM data 
processing 

Typically, 
matrix-vector 
multiply 
accesses 
SRAM 1-row at 
a time, 
integrate and 
accumulate in 
the periphery 

High Typically, 
lowbit 
integer types 
(e.g. int4). 
No analog 
effects on 
computation. 
Very high on 
memory traffic  

High, fully digital 

SRAM- 
based  
compute  
(Analog) 
 

Adapted 
SRAM 
macro 
to perform 
computat- 
ions in 
analog 
domain 

Typically, Matrix 
vector multiply 
access SRAM N-
rows 
together, ADC and 
accumulation in the 
periphery 
 

Higher 
than 
SRAM 
based 
digital 

Ternary 
weights, 
Arbitrary 
Integer 
precision 
inputs, 
analog 
domain 
can induce 
noise in 
computation 
and requires 
careful 
quantization 
very high on 
memory 
traffic,  

Noise sensitive 
(like V, T,  
process). 
Limited accuracy 

RRAM 
based 
 

Resistive 
RAM allows 
for 
nonvolatile 
compute 
near 
memory 
architectu- 
res 

Typically,  
Matrix vector 
operation with 
Multiply 
Accumulation 
(MAC) 
operation as its  
kernel operation 

Very high 
due to 
Non- 
volatility 
(zero 
leakage) 
 

Operations 
are  
performed in 
the analog 
domain. 

RRAM has some 
endurance 
Issues when 
performing 
multiple write 
operations. 
Hence, it is 
suitable for 
inference 
operations where 
the RRAMs are 
programmed 
once/less 
frequently. 

 

5. Roadblocks 
 
Despite the numerous pre-existing DNN compilation translating deep neural networks to 
efficiently use accelerators, it is still a difficult task that either requires industry-scale 
engineering to automate this process or significant manual efforts otherwise. Several 
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established DNN compiler frameworks are open-source and can in-theory be used for our efforts. 
However, they a need to be adapted to our use cases and different frameworks are suitable to 
such adoptions at different levels. In the following, we summarize some of the challenges that we 
have observed over the last years. 
 
LLVM / GCC 
 
While LLVM / GCC are not necessarily a DNN compiler framework C/C++, compilers are an 
important part of the CONVOLVE compiler stack. In particular, the L0 instruction set extensions 
that may be used to accelerate RISC-V cores must be supported by these compiler toolchains to 
enable developers to write optimized kernels in C/C++ to target such instruction set extensions. 
In particular, such optimized kernels are the foundation of DNN libraries such as PulpNN. While 
LLVM and GCC are production quality compiler stacks that offer all the necessary features to 
support such instruction set extensions, only a small set of expert compiler developers can add 
such extensions. This hinders rapid prototyping and effective design space exploration. While 
alternatives would be desirable, the ecosystem pressure to use LLVM/GCC at least in parts 
remains high and the cost of developing alternatives is likely prohibitive. 

 
Halide / TVM 

 
TVM is one of the leading deep learning frameworks and has very powerful tooling thanks to its 
auto-scheduler.  However, as a successor of Halide it remains a single-domain compiler that was 
expanded from supporting image processing on 2D pictures to multi-dimensional tensors. While 
TVM supports a large set of CPU and GPU targets, extending it with custom features – especially 
ones that are accelerators specific – is increasingly difficult. In particular, TVM does not offer a 
state-of-the-art compiler design framework that makes it easy to instantiate new IR abstractions 
and does not offer the large amount of tooling that we are used to from compilers such as LLVM. 
Similarly, any extension we develop for TVM does not benefit from synergies with compilers that 
are not deep learning focused. Finally, TVM as a deep-learning only compiler prevents close 
coupling with low-level hardware lowering, e.g., to RISC-V. 

 
Tensor Comprehensions 

 
This project is not active anymore and its developers now work on MLIR. The reasons to move 
away from Tensor Comprehensions were: 

• Halide was never properly used in Tensor Comprehensions beyond shape inference. Most 
of the investment went into simplifying polyhedral transformations and building a usable 
end-to-end system. MLIR was deemed a better infrastructure to mix these types of 
compilation. 

• The early gains provided by reusing established infrastructures (HalideIR and ISL 
schedule trees) turned into more impedance mismatch problems than could be solved 
with a small tactical investment. 

• Tensor Comprehensions emitted CUDA code which was then JIT compiled with NVCC 
from a textual representation. While this was a pragmatic short-term solution, it yielded 
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hard to perform low-level rewrites that would have helped with register reuse in the 
compute-bound regime. 

• The same reliance on emitting CUDA code made it difficult to create cost models. This 
made it artificially harder than necessary to prune out bad solutions. This resulted in 
excessive runtime evaluation, as reported in the paper [11]. 

 
Tensor Flow / IREE / Open XLA / JAX 

 
The Google deep learning stack is complex and fragmented yet has a lot of promising technology. 
While the original TensorFlow code generation has been replaced by Google with an IREE and 
OpenXLA based flow, IREE, OpenXLA as well as JAX together form an integrated ecosystem that 
in large parts is very useful to us. While the use of MLIR within this framework facilitates 
interactions, the design of reusable components, and the various useful abstractions in the 
Google ecosystem are spread across different projects and not all of them are as mature as 
CONVOLVE requires. IREE has supported for a long time only some generations of CPUs. 
Moreover, accelerators such as GPUs and even more so CONVOLVE style L1/2 accelerators are 
practically not supported. Similarly, the connection of the Google ecosystem with PyTorch is 
rather limited.  

 
PyTorch 

 
PyTorch is likely the most widely used DNN compiler framework. It is incredibly well accepted by 
deep learning engineers and recently even gained a new compiler framework written purely in 
Python. Yet, PyTorch has very limited support to target custom accelerators and the underlying 
IRs that one can represent are not sufficiently general to express many accelerator concepts. In 
particular, PyTorch can only represent graph style IRs that look like deep neural networks, but has 
very limited support for hierarchical IRs that are well suited to model loop nests or GPU and 
accelerator code launches. PyTorch also has very limited tooling to effectively support compiler 
developers and has little intentions to become a generic compiler framework. Hence, building 
large amount of tooling around the PyTorch compiler stack is unlikely to result in broad use of our 
tools. 

 
MLIR 

 
MLIR as a project offers a full-fledged compiler framework, yet it only provides a couple of 
abstractions out of the box. It is more a tool for building compilers than a complete compiler 
framework. As a tool, it is perfectly useable and has incredible community support. Yet, it is 
entirely insufficient when one expects an out-of-the-box deep learning compiler. Even as a 
compiler framework, it is only easy to use for compiler experts. Non-experts, application or 
hardware engineers, or general developers who want to tailor a compiler to their specific 
applications or accelerators will require months of training to work with MLIR. As a result, it is not 
suitable for rapid prototyping or fast-moving research, but more for deploying production quality 
compilers. 

 
Dory 
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ETH’s in-house compiler stack is tailored to their in-house hardware and likely the closest in 
terms of end-to-end compilation flow that we have when aiming to target CONVOLVE style 
accelerators. However, Dory has very much been tailored to ETH hardware, is not very extensible, 
and shares with TVM the constraint that it was never intended to be very extensible. Hence, non-
standard DNNs, control flow as needed for dynamic DNNs, and many other extensions are hard to 
integrate into Dory. Similarly, the tooling around Dory is very limited to compare to the industry-
level tooling frameworks such as LLVM and MLIR offer.  

 
Overall, we have many powerful frameworks that are excellent in certain aspects. Yet, none fully 
covers the needs of CONVOLVE. Many also do not offer the extensibility and code-reuse potential 
that we need to cover the diverse applications and accelerators in CONVOLVE. 
 

6. Reseach 
 
We first describe a preliminary design for the compilation pipeline. We then describe the 
research question of how hardware experts can interface with the pipeline to introduce expert 
knowledge into the compilation. We further describe dependencies on other WPs and the use 
cases addressed by this WP. Finally, we list out the contributions of this WP within the project.  
 

6.1. Compilation Pipeline 
 
The CONVOLVE compilation flow’s main objective is to effectively map deep neural networks on 
heterogenous chips consisting of RISC-V CPU clusters and the various CONVOLVE accelerators. 
To maximize the scalability and impact of our compilation flow and enable it to scale to real-world 
workloads, we will take advantage of pre-existing efforts and make it available in a form that 
maximizes collaboration and reuse. Hence, we will rely on established open-source technology 
stacks and evolve them where needed. 

 
The CONVOLVE compiler is divided into different parts: Frontends, Greybox Compiler, Compiler 
Interaction Tooling, Analysis, Optimizing & Scheduling. 

 
Frontends 
 
We support two main frontends: Tensorflow and PyTorch. By default, these frontends use eager 
mode compilation, in which a function is executed as soon as it is seen. Instead, we use JIT 
compilation from these frameworks in which the computation is represented as a graph, which 
can be further lowered into a common IR. We impose a set of requirements on the inputs to make 
sure that they are JIT compilable. InputIR is a common IR we use as an input to our MLIR Compiler. 
As of now, we use MHLO as the InputIR, but this will change as there is community effort to build 
a common InputIR. Potential replacements include StableHLO, or MLIR-TCP. We will consider 
including JAX and TOSA as frontends because they have a lowering to MHLO, but we leave this 
decision to be guided by our research outcome. 

 
Greybox Compiler & Compiler Interaction Tooling 



D5.1 Constraints and opportunities definition 

Grant Agreement 101070374                     Page  
|  28 

 

 
The Greybox Compiler (Figure 3) is based on the MLIR compilation framework. It receives input as 
InputIR, which is lowered into a mix of dialects that co-exist together. We take existing MLIR 
dialects like Linalg and SCF to represent the actual computation over tensors. We model the 
interfaces provided by the accelerators as hardware abstraction dialects which allow us to model 
memory transfers, accelerator control, direct accelerator calls as dialects. The tensor 
computations in Linalg and SCF can be lowered to LLVM, SPIRV, or direct accelerator calls. Our 
compiler will be a greybox compiler as the compilation flow can be changed without recompiling 
the compiler. This offers experts more control over the compilation flow and will be implemented 
using dynamic dialects such as the transform dialect, PDL, or IRDL. To make the process of 
changing the compiler or building domain specific compilers particularly easy, we will integrate 
and evolve the xDSL framework to offer Python-Native compiler interaction tooling where users, 
e.g., application or hardware experts can reach, interact, and evolve compilers using Python. 

 
Analysis 
 
The analysis hooks into the MLIR or xDSL compiler to provide information to optimize the current 
workflow of the compiler. This allows static analysis, such as cache analysis or profiling to 
influence the compilation flow for a particular input based on the input’s characteristics. 

 
Optimizing & Scheduling 

 
Optimizing & Scheduling is the end of the compiler pipeline, where the output of the MLIR 
compiler is first automatically optimized and then scheduled onto the hardware accelerators. The 
scheduling infrastructure takes input from multiple analyses such as energy estimation, tools 
such as ZigZag, or application and hardware experts.  

 

https://ieeexplore.ieee.org/document/9360462
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FIGURE 3. THE COMPILATION PIPELINE.  

The above flow is a preliminary design that will be adapted based on input from the application 
and hardware developers as well as based on the evolution of the deep learning compiler 
community. In particular, we do not aim to compete with existing or upcoming deep learning 
compiler frameworks but will embrace change in our roadmap. 
 

6.2. Research on Interfacing with the Accelerators 
 
A key research question in CONVOLVE is how our compiler can best interact with accelerators 
and this question is particularly hard to solve. ETH Zurich and KU Leuven have both specialized 
tools (e.g., Dory, ZigZag) to cover part of this question. The tools are very effective but limited in 
scope and entirely independent of the open-source compiler stack proposed by MLIR and many 
industry partners. While CONVOLVE can and will rely on pre-existing tools as a first step, we aim 
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to research if we can integrate the ideas or tools better with the MLIR compiler stack. Yet, the 
degree to which this integration will take place is an open research question for us. 
 
Our initial approach towards interfacing with accelerators through MLIR will embrace existing 
best practices used by our partners as well as industry. In particular, ETH uses an accelerator 
library called PULPNN that mirrors industry efforts, e.g., Intel’s tensor processing primitives, 
where hardware experts write optimized kernels for a given hardware that can be used by tools 
such as compiler to effectively target this hardware. These kernels contain all the information 
needed to move data to an accelerator, run on an accelerator, and eventually move data back to 
host memory. From a compiler perspective these libraries look very much like a function call or a 
high-level intrinsic. Hence, as a first step we will investigate if accelerator support can be 
provided using a similar interface where hardware experts provide their optimized kernels as well 
as mappings from compiler-internal operations to these primitives. The compiler can then 
automatically select the relevant primitives. 
 

6.3. Dependencies with other WPs 
 
As the compiler is the connection between application and hardware stack, it is heavily 
interconnected with the other work packages. In particular, we require the following input from 
other work packages. 
 
WP1 
o The use case providers in WP1 provide us with code examples for their applications that 

influence and continuously inform the design of the compilation flow along multiple 
dimensions. 

o The use case providers use our compilation flow to optimize their applications and provide 
feedback on the features that are needed. 

o The use case providers provide optimizations at the application level and annotate their 
applications with information that facilitates the accelerator mapping. 

o The neural networks provided must follow these requirements: 
o The code given should be either in PyTorch 2.x or Tensorflow 2.x. Older versions of PyTorch 

and Tensorflow are not supported. 
o The given code must separate what is meant to be compiled and what is supposed to run in 

python. The code meant to be compiled must be jit compilable in the frontends. 
▪ For Tensorflow, this Is done by decorating a function with tf.function (jit_compile=True) to 

mark it for compilation. The given function must compile after decorating it with this 
method. 

▪ For PyTorch, this is done by decorating a function with dynamo.optimize to mark it for 
compilation. 

 
WP2 
o A set of interface specifications at the ISA-level for L0 accelerators and a DMA-based 

interface definition for L1/L2 accelerators. 

https://www.tensorflow.org/api_docs/python/tf/function
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o A set of kernel operations for the accelerators (e.g., similar to PulpNN), where the high-level 
interface of the kernel has been agreed on with WP1 and where the low-level implementation 
of the kernel operation is hand-optimized for the specific accelerator. 

o Two models for the accelerators that – at best – can interface with MLIR or are even closer 
integrated with MLIR. 

▪ A behavioural simulator. 
▪ A performance model. 

 
WP3 
o Information on the following types of security aspects: 

• Threat models for security guarantees. 
• Real-time guarantees. 

o Test cases to evaluate security aspects. 
 
WP4 
o We do not expect major input from WP4. As our compiler pipeline will be used by WP4, general 

ideas and feedback on how to evolve our compiler framework, analysis, and optimizations 
may emerge. 

 
WP5 
o n/a (this is our work package) 

 
WP6 
o A runtime library to enable/disable execution on the accelerators, setup memory, etc. 
o Pre-existing tools to orchestrate accelerator mapping (e.g., Dory) and Quantization 

(QuantLab) 
o Collaboration on developing an MLIR-based accelerator mapping flow (with KU Leuven) 
 

6.4. Use Cases Requirements Addressed by the WP 
 
We aim to address the following use case requirements. 

 
• UC Vinotion – NF3 Tooling for rapid application development in software 
     § We will facilitate rapid application development by embracing existing Python-based DNN 

workflows as frontends, offering a grey-box compiler experience in Python, and by 
providing a Python-based simulator. 

 
• UC GNA - B1 Feedback of speech quality assessment to user so the user can intervene 

manually and B2 Knob for changing the amount of (denoising) processing taking place to 
empower individual preferences. 

 
    § By offering easier access to the compiler, individuals will be able to change the behaviour 

that affects compiler decisions. WP5 can support GNA efforts to integrate domain-
specific decision points into the compilation flow and connect the compiler with a 
potential domain-specific frontend. 
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• UC TASE – F1 Possible continuous integration of HW/SW improvements and new features 

 
§ We will include the outcome of static analyses and profiling analyses in the code to 
 speed-up and serve future software optimizations 
 

Security concerns are addressed indirectly through the compiler, by matching the software to 
the corresponding, secure, hardware platform. Potential software-hardware co-designs to 
address speculative side-channel attacks are also discussed in section 3.6.3. 
 

6.4.1. Use-Case 1: Speech Quality and Denoise 
 

6.4.1.1. Description 
 
The uses cases identified by Jabra address the challenge of improving speech quality in 
telecommunication and can be divided into Deep noise suppression and Speech quality 
prediction.  
Deep noise suppression refers to the use of deep learning algorithms to remove noise from audio 
signals containing speech, such as those acquired by a headset or speakerphone microphone. 
This task involves training a neural network to learn a mapping from a noisy signal to a clean one, 
typically using large amounts of synthetic data.  
Speech quality prediction involves using a deep learning model to predict the perceived quality 
of a given noisy/degraded speech signal, without relying on a reference clean signal. The network 
is typically trained using a dataset of speech signals that have been subjectively rated by human 
listeners or scored using existing full-reference SQ metrics such as PESQ. 
 
For deep noise suppression, the following baseline architectures have been identified: DEMUCS, 
CRUSE, and NsNet2.  
DEMUCS is an encoder-decoder architecture originally developed for source separation. The 
encoder consists of a series of layers performing 1D dilated convolution that extract high-level 
features from the input waveform. The decoder comprises a series of transposed convolutional 
layers that estimate a clean signal. Between encoder and decoder, an LSTM recurrent network 
performs sequence modelling on the embedded representation. The model features skip 
connections between analogous encoder and decoder layers, similarly to U-Net.  
CRUSE features a similar architecture, also inspired by U-Net, but operates in the time-
frequency domain (i.e., on spectrograms) using 2D strided convolution and transposed 
convolution for encoder and decoder, respectively. Furthermore, the sequence modeling in the 
bottleneck is performed by a GRU layer. 
 
Finally, NsNet2 features a sequence of fully-connected and GRU layers. These are combined so 
as to extract features from the input spectrogram, perform sequence modeling, and finally derive 
a denoising mask that can be applied to the input. 
For speech quality estimation, some of the main models in the literature include DNSMOS, NISQA, 
and QualityNet.  
DNSMOS is a convolutional model featuring four blocks of 2D convolution, ReLU activation, max 
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pooling, and dropout, followed by two dense layers. It is trained on a set of 600 noisy speech clips 
that have been processed through a variety of noise-suppression algorithms, whereas the target 
MOS were gathered through a human subjective listening test based on the ITU-T P.808 standard.  
 
Similarly, NISQA comprises a convolutional frame-wise feature extractor, followed by a self-
attention block to model temporal dependencies, and finally an attentive pooling mechanism. 
This model can be trained to predict both MOS and four additional quality dimensions.  
Finally, QualityNet use a bidirectional-LSTM block followed by fully-connected layers predicting 
frame-wise MOS predictions which are then averaged together to provide a global score.  
 
Although new denoising and speech quality prediction models are constantly being developed, 
these models bove exemplify the use of several deep learning primitives, such as convolution, 
attention mechanisms, and recurrent units. The existing code for some of these models and use 
cases can be found here: https://gitlab.tue.nl/es/convolve/wp1-use-cases. At the moment, this 
includes: 

• a PyTorch implementation of DEMUCS 
• a TensorFlow implementation of a UNET-based model 
• a PyTorch implementation of NsNet2, UNET, and CRN, with hopefully more models 

coming (dyn_experiments repo) 
• relevant datasets for denoising tasks (gna_datasets repo) 
• a collection of full-reference speech quality metrics, that can be used to evaluate 

denoising tasks or to generate labels for SQP. 
 

6.4.1.2. Corresponding Security Concerns 
 
In general, GNA is not overly concerned about overall lack of privacy or safety from the user's 
perspective, since no data is stored on the device, and data transmission commonly occurs 
within inherently insecure channels (air medium) or channels where security is ensured by the 
underlying transmission protocol (i.e. bluetooth or other RF).  
 
However, one realistic concern is the protection of intellectual property in form of specialized 
data and neural network architecture which can be expensive to acquire and train. This can and 
has been threatened e.g. by the use of reverse engineering techniques.  
 
In general, reverse engineering refers to the process of analyzing a product or system to 
understand its design, function, or components. In the context of artificial intelligence, reverse 
engineering4 can be used to extract information about the inner workings and design of a neural 
network model. 
 
One common method of reverse engineering neural networks can be the teacher-student 
method. In this approach, a large, complex neural network (the teacher) is trained on a dataset, 
and then a smaller, simpler neural network (the student) is trained to mimic the behaviour of the 
teacher network. By examining the output of the student network, an attacker can gain insights 
into the inner workings of the teacher network, potentially revealing proprietary information 
about the model's architecture or training data. 

https://gitlab.tue.nl/es/convolve/wp1-use-cases
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To prevent reverse engineering through the teacher-student method, one approach is to 
introduce noise or other markers to the output of the student network, making it more difficult 
for an attacker to discern useful information. Another approach is to use adversarial training, in 
which the student network is trained to resist attempts at reverse engineering by introducing 
deliberate misdirection or obfuscation. 

 
An additional method of reverse engineering neural networks can be through the analysis of their 
output alone, without knowledge of the underlying architecture or training data. For example, an 
attacker might input a series of carefully constructed test cases to the network and analyse its 
responses to infer information about its internal structure or decision-making process. 
 
To mitigate this special type of reverse engineering, one approach could be to introduce 
watermarking5 into the output of the neural network. Watermarking involves adding a small, non-
noticeable signal to the output of the network that can be used to identify the source of the 
output. This can deter attackers from attempting to reverse engineer the network, as the 
presence of the watermark can reveal the actions of the attacker. 
 

6.4.1.3. Reference to the Complied Code 
 
Compiler experiments: https://gitlab.tue.nl/es/convolve/wp5-compiler/kunwar-experiments 
 

6.4.1.4. Characterization of the Use Case 
 
In order to analyse the performance of the Demucs neural network, profiling data was collected 
to identify areas that could be optimized to improve the overall execution time. 

                
FIGURE 4. MEMORY TRANSFERS ACCOUNT FOR 2/3 OF THE EXECUTION TIME 

. 
The profiling data (Figure 4) shows that a significant portion of the time is spent on data transfer 
operations, specifically the cudaMemcpyAsync operation, which accounted for 64.7% of the total 

https://gitlab.tue.nl/es/convolve/wp5-compiler/kunwar-experiments


D5.1 Constraints and opportunities definition 

Grant Agreement 101070374                     Page  
|  35 

 

time. This indicates that there is a need to optimize data transfers in order to reduce cache 
misses and improve the overall performance of the neural network. 
 
To address this issue, several strategies are suggested, including restructuring the data to 
reduce cache misses, fusing operators together to increase data reuse, and adding prefetch logic 
to eliminate cache misses. These strategies are aimed at optimizing the data transfer process to 
minimize the impact on the overall execution time of the neural network. 
 
Another area that is identified for optimization is the cudaStreamSynchronize operation, which 
causes the host to stall until the stream completes all its tasks. This accounts for 23.9% of the 
total time and indicates that there is a need to overlap computation and communication to 
reduce the overall execution time. 
 
To address this issue, multiple streams are suggested to perform computation and data transfer 
concurrently, which would significantly improve the performance of the neural network. By 
overlapping computation and communication, the overall execution time of the Demucs neural 
network can be greatly reduced, making it a more efficient and effective tool for audio source 
separation. 
 
The profiling data also revealed that a significant portion of the time is spent on specific kernels 
within he Demucs neural network. In particular, the cutlass kernel accounts for 17.3% of the total 
time, while the xmma_cudnn kernel accounts for 15.6% of the total time. 
This indicates that by identifying the bottlenecks and optimizing these kernels, the overall 
performance and energy-efficiency of the Demucs neural network can significantly improve. 
 

6.4.2. Use-Case 2: Audio Detection and Tracking 
 

6.4.2.1. Description 
 
This use-case focuses on the analysis of acoustic scenes. More precisely, we consider typical 
traffic scenes as recorded by cars equipped with arrays of microphones. These signals are 
complex superpositions of non-stationary sound sources like cars, emergency vehicles as well as 
stationary emitters like people taking, construction site noises and many more. The aim is to 
reconstruct information about the individual acoustic sources that could either augment existing 
information obtained from other sensors or provide additional, safety-critical information.  
  
Here, we dissect the analysis of traffic scenes based on acoustic features into two parts: First, 
siren sounds should be detected and, second, the position of these sources should be 
reconstructed based on the signal recorded by the set of microphones. For that purpose, we draw 
on recurrent neural architectures that are trained on features extracted from the raw audio 
signals to predict the presence of an emergency vehicle and in a second step its position. The 
models feature a recurrently connected hidden layer composed of either GRUs or LSTMs and 
dedicated readout layers. The latter contains linear units with activation functions determined 
by the predicted observable. For the detection, a set of linear units with sigmoidal activation 
function is trained to output a signal as soon as a sound source of a specific kind is present within 
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the scene. For the tracking a set of readout modules is tasked to output spatial information for a 
set of sound sources. Each module features three units to predict the distance as well as angular 
information for a single sound source. 
 

6.4.2.2. Conclusion 
 
The strategies for optimization described in the paper can be utilized for audio detection and 
tracking for object detection and classification. Audio processing also involves the use of deep 
neural networks which need considerable memory for storing intermediate feature maps. By 
minimizing the number of memory accesses required for these intermediate feature maps using 
techniques such as data reuse, operator fusion, and prefetching data, the performance of audio 
processing can be improved substantially. This can lead to greater energy efficiency, quicker 
execution time for audio detection and tracking operations. 
 

6.4.3. Use-Case 3: Image Processing 
 

6.4.3.1. Description 
 
For image processing, one of the most popular deep learning algorithms is YOLO (You Only Look 
Once) which is used for object detection and localization in images. YOLO is capable of detecting 
multiple objects in real-time with high accuracy and has a wide range of applications, some of 
which include: 

1. Autonomous driving: YOLO can be used to detect other vehicles, pedestrians, traffic 
signs, and road markings, which is important for developing autonomous driving systems. 

2. Security and surveillance: YOLO can be used to detect and track people, vehicles, and 
other objects in real-time, which is useful for security and surveillance applications. 

3. Security and surveillance: YOLO can be used to detect and track people, vehicles, and 
other objects in real-time, which is useful for security and surveillance applications. 

4. Healthcare: YOLO can be used to detect and analyse medical images, such as X-rays and 
MRIs, to help diagnose diseases and monitor treatment progress. 

5. Environmental monitoring: YOLO can be used to detect and track wildlife, vegetation, and 
other objects in natural environments, which is important for environmental monitoring 
and conservation efforts. 

 
6.4.3.2. Characterization of the Use Case 
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FIGURE 5. CUDA API SUMMARY YOLO_V7. 

 
Based on the profiling results, it seems that the majority of the time (64.3%) was spent in the 
cudaLaunchKernel function, which is responsible for launching CUDA kernels on the GPU. This 
indicates that the program is heavily reliant on GPU computations and that optimizing the kernel 
execution could lead to significant performance improvements. 

 
In the specific context of optimizing the cudaLaunchKernel API, memory dependence analysis 
and flow analysis can help identify opportunities to optimize the data access patterns and control 
flow of the kernel function being launched. By optimizing the kernel function, the 
cudaLaunchKernel API can be used more efficiently, which can help reduce the overall execution 
time. 

 
Cuda Kernel summary (table 3) provides us the information about total execution time, Number of 
times kernel was called, average time for the kernel execution, minimum and maximum time 
taken to execute a kernel.  

 
** CUDA GPU Kernel Summary (cuda_gpu_kern_sum): 
 
 

TABLE 3. KERNEL SUMMARY. 

Time (%) Total Time(ns) Instances Kernel Avg(ns) 
15.5 1,32,19,64,293 2,33,303 nchwToNhwcKernel 5666.3 
11.0 93,67,95,389 2,19,552 elementwiseKernel 4266.8 
8.5 72,28,50,355 39,255 cutlass_tensorop 18,414.2 
7.7 66,04,22,481 2,05,590 Vectorized_elementwise 3,212.3 

 
As we can see (Table 3) the majority of time in spent in Kernel execution, Kernels mentioned in the 
table can be optimized in order to reduce the overall execution time. 
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6.4.4. Use-case 4: Satellite Image Segment 
 

6.4.4.1. Description 
 
One potential use-case of satellite imaging is object detection and segmentation, which can be 
achieved using the Mask R-CNN framework. Mask R-CNN extends the Faster R-CNN architecture 
by adding a branch for predicting segmentation masks on each region of interest (RoI) in parallel 
with the existing branch for classification and bounding box regression. The mask branch is a 
small fully convolutional network (FCN) applied to each RoI, predicting a segmentation mask in a 
pixel-to-pixel manner. This allows for the detection and segmentation of multiple objects within 
an image. 
 
Satellite imaging can be used for various applications such as land use and land cover mapping, 
urban planning, disaster management, environmental monitoring, and agriculture. For example, 
satellite imagery can be used to detect and segment different land cover types such as forests, 
agricultural land, water bodies, and urban areas. This can provide valuable information for 
environmental monitoring, land-use planning, and natural resource management. 
 

     Additionally, R-CNN-based algorithms can be used for change detection analysis in satellite 
images, which involves comparing two or more images taken at different times to identify 
changes in land cover, infrastructure, or other features. The use of deep learning algorithms such 
as Mask R-CNN can improve the accuracy and efficiency of such analyses. 
 

6.4.4.2. Conclusions 
 
The optimization techniques discussed for the two use cases analysed in depth (Demucs and 
YOLO) can also be applied to the task of satellite imaging, specifically in the context of the region-
based convolutional neural network (R-CNN), and Object detection and classification. 
 
R-CNN is an important application area for DNNs, as satellite imagery analysis is used for a wide 
range of tasks, from mapping and monitoring to natural disaster response. However, satellite 
imaging datasets are often extremely large and memory-intensive, making it difficult to run DNNs 
on small devices or with limited resources. By applying the operator fusion, instruction fusion, 
prefetching data techniques, etc the memory usage and energy consumption of R-CNNs can be 
significantly reduced, leading to improved performance and energy efficiency. 
 

6.5. Description of the Contributions to the Demos 
 
WP 5 will offer support to all CONVOLVE partners with the use of existing DNN flows as well as our 
Grey-box compiler extensions and static analyses to enable our application and hardware experts 
to map our demonstrator applications to our accelerators. WP 5 will also provide automatic 
tooling to apply some yet-to-be-defined optimizations automatically. We will make all our 
compilation tools available. Either via open-source snapshots of our work or preferably as 
contributions to existing DNN compiler stacks. 
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7. Plans 
 
The main goal is to manage and evolve the existing global deep learning compiler ecosystem and 
enable its effective use for the CONVOLVE applications and accelerators. We will support our 
machine learning and application partners to be productive in obtaining effective code for the 
dynamic neural networks and other novel machine learning architectures they develop. To 
benefit from the work in CONVOLVE, it is central for this code to benefit from the acceleration 
capabilities provided by the chips developed by our hardware partners. Another goal is to provide 
a code analysis toolkit that will provide useful estimates of hardware utilisation for developers 
working on optimising their neural networks and other workflows. We will approach both these 
goals iteratively, first setting up an environment that embraces the pre-existing manual 
workflows, global deep learning system, and partner-specific tools. We will then work with our 
partners to increase their productivity in mapping applications to accelerators. In particular, we 
will offer developer tooling to support the interaction with pre-existing compilation stacks, 
provide static analysis to increase code understanding, and automate certain program 
optimizations. As a result, we aim to work with our partners to deliver expert-level performance 
at increased developer productivity. 
 
Our machine learning partners will need analysis tools to choose and optimise their architectures 
more effectively. Memory and control dependences between instructions, statements, operators 
etc., are crucial static analyses at the foundation of all optimizations. We will investigate 
techniques to efficiently include the outcome of the analyses in the code to be reused when re-
compiled for new targets. These can also be used as hints to the new (co-designed) hardware to 
enable runtime optimizations based on static guarantees. Reusing the outcome of the analyses 
across different compilations, reduces analysis-time, optimization-time, and compilation-time 
in the future, for emerging targets.  
Hence, we will provide the following static analyses and performance modelling tools: 
 

1. Profiling, static analysis of the use cases, outcome embedded in the code (e.g., at the IR 
level or through code annotations). UMU 

a. Memory dependences 
b. Control-flow dependences 
c. Data sharing and synchronization  

2. A static analysis to model the cache behavior of deep neural networks. EDU 
3. An emulator for RISCV instructions that can be easily extended by our hardware partners 

to model new L1/2/3 accelerators. EDU 
 
We will also provide the tools needed to support mapping and optimisation of the neural networks 
for the target architectures. Based on the analysis of the use case 1 (Speech quality and denoise), 
we identified that one of the main bottlenecks consists in the data transfers between the host 
and the accelerator. This can be addressed through several techniques, of which we are going to 
focus on neural networks operator fusion and data analysis to transfer data more efficiently from 
host to accelerators. Finally, to leverage the accelerators, we will perform static instruction 
reordering to enable instruction fusion.   
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4. We setup a first prototypical end-to-end compilation flow targeting CPUs and potentially 
GPUs by leveraging existing DNN compilers such as PyTorch, xDSL, and MLIR. EDU, UMU 

5. We will facilitate the modification of and interaction with this prototypical compilation 
flow, e.g., by enabling easy access into this flow through Python and by lowering the 
barrier for introducing new abstractions and optimizations using declarative IR and 
rewrite definitions such as IRDL and PDL. We will develop these innovations to enable our 
partners to define their own abstraction and optimizations as part of a grey-box 
compilation flow that combines automatic and manual efforts. EDU 

6. With that compiler infrastructure in place, we will extend it with further optimisations. 
a. Mapping of kernels (code regions) to CPU vs accelerators based on their 

characteristics UMU, EDI 
i. Leverage the static analyses from step 1 and integrate the mapping 

suggestions provided by external tools, such as ZigZag ,  etc. 
b. Optimizations: Fusion UMU 

i. On the high-level, neural networks operator fusion 
ii. On the low-level, dedicated instruction scheduling enables accelerator-

specific instruction fusion 
iii. On the low-level instruction re-ordering (scheduling) can reduce 

speculation time and increase runtime memory level parallelism, through 
software-hardware co-designs 

c. Optimizations: Data pre-fetching UMU 
 
Finally, it is important for WP5 and CONVOLVE to remain agile and up-to-date with latest 
innovations in the space of deep learning compilation. The landscape in this space is moving fast 
and we can maximize value for CONVOLVE by embracing and collaborating with the leading 
communities in this area. Hence, WP5 will closely follow the latest innovations in deep learning 
compilation, always ensuring that we maximize benefit from access to the latest compiler 
technology while considering the needs and pre-existing technology stacks. 
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