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Deliverable Summary 

The deployment of machine learning is growing exponentially thanks to vast availability of the 
data, the compute resources for training, and the advances in training algorithms, along with 
the achievable performance/accuracy improvement on more complex tasks. In the last past 
years, various approaches to speed-up Deep Neural Networks (DNN) inferences were 
developed, ranging from GPU-based (Graphic Processing Unit) solutions which also target 
embedded devices (such as NVIDIA Jetson), FPGA (Field Programmable Gate Array) 
frameworks with/including their HLS (High-Level Synthesis) approaches, to dedicated ASICs 
(Application-Specific Integrated Circuit).  

Addressing rapid growing compute requirements and complexity posed by DNNs is 
challenging, especially on designing hardware accelerators that can fit future trends. In this 
deliverable, we define the micro-architectural building blocks that are served as building 
blocks that compose DNNs / CNNs (Convolution Neural Network), viz. the layer types 
employed in WP1. This method allows us to break down the hardware requirements for our 
targeted accelerators and can improve flexibility of our accelerators to cope with future 
demands. 

1. Introduction 

Emerging and rapid growing Deep Learning (DL) have shown exceptional performance in 
addressing complex tasks, such as image classification or object detection, and the rapid 
growth in these methodologies has allowed the accuracy to improve continuously thanks to 
the more advances in training methods. Whilst the accuracy of such tasks is continuously 
improving, thanks to the more complex network topologies that have been developed and 
deployed, it imposes challenges in supporting such inference efficiently on resource-
constrained edge devices. Traditional computing platforms such as CPUs and GPUs are not 
sufficient to infer such networks in constrained systems due to limited power budgets, 
limited area/volume of the systems, real-time and/or latency requirement, etc. Therefore, 
for such systems, dedicated hardware accelerators are designed and deployed. Nonetheless, 
dedicated hardware accelerators have their own limitation to cope with different network 
topologies and are typically optimized towards specific tasks with specific networks. 
Therefore, we need to evaluate the network topologies in detail to improve the flexibility of 
hardware accelerators and utilize this information in devising hardware architecture for such 
accelerators.  

This document “D2.1 Report on the Roadmap ” is a deliverable of the Work package No. 2 
“Self-configurable modular ULP accelerator blocks”, task T2.1 “Roadmap for energy-efficient, 
reconfigurable, and self-healing functional units ” under the task lead of Bosch, sets out the 
“Report on the roadmap” including challenges in Chapter 2, landscape of hardware 
accelerators in Chapter 3, our target accelerators in Chapter 4, the basic building block 
decomposition in Chapter 5, initial standard interface requirements as basis for T2.2 and 
WP6 in Chapter 6, as well as the summary in Chapter 7. 
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2.  Challenges 

The compute and memory demands on inferring neural networks pose challenges on 
resource-constrained embedded systems. The development of network topologies is mainly 
driven by the task complexity, and it mainly uses GPUs as basis of computing brain for 
training the networks, validating the accuracy of the deployed networks, and latter inferring 
the networks. This is a reasonable approach as most of the pipelines are deployed in GPUs, 
including optimization techniques such as compressing the networks, quantizing the weights 
and the activations, etc. to make such networks smaller and embedded-friendly. 
Nonetheless, deploying such networks on embedded devices requires rethinking of the 
computing architecture to address the challenges in resource-constraint embedded devices, 
such as limited power budget, latency, security, etc. In this chapter, we discuss the common 
challenges when inferring neural networks in such systems. 

2.1.  Energy Efficiency 

One important indicator to evaluate the performance of DL accelerators is their energy 
efficiency. This is typically visualized as in Figure 1, where on one axis peak power is used as 
measurement and on the other axis its peak performance in terms of operations per second 
these accelerators are capable to deliver. The relation of these parameters is at most 
interesting as it gives its rough performance estimation, and this value is well-known 
accepted in the community. Thus, we can draw baselines to divide and categorize the 
efficiency and the limitation of these accelerators, which gives us normalized Ops/W as 
efficiency indicator. With state-of-the-art hardware architectures that are mainly based on 
digital CMOS design, 1-10 TOPs/W are typically expected. Some optimization techniques such 
as data representation (e.g., low bit precision), exploiting sparsity on both weights and 
activations, data re-use are the key ingredients to achieve better efficiency.  

We can also cluster target application segments based on their power consumption based on 
this visualization. E.g., sub-milliwatt for very-low power system, followed by embedded 
systems that are targeting around 1-10 watts, autonomous, local data centre, and finally farm 
infrastructure. Such clustering method varies and is subject to change depending on the 
definition of system on such clusters itself. 
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FIGURE 1. PEAK PERFORMANCE VS. PEAK POWER OF DEEP LEARNING ACCELERATORS AND PROCESSORS [1]. 

 

When we breakdown on the energy consumed on accelerating DL in details [2], we notice 
that most of the energy consumption is driven by moving data from one point (such as main 
memory, DRAM) to the accelerator and vice versa. Even for high-precision floating-point 
FMAC operation, the memory-to-compute relation is more than 2 orders of magnitude, 
depending on DRAM access pattern/behaviour, technology, etc. 

This also means that data locality and data reuse will help to reduce energy consumption of 
the system. Once we master to exploit these challenges, the emerging memory option to 
execute the compute in the memory will further allow us to minimize this energy 
consumption. 
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FIGURE 2. BREAKDOWN OF ENERGY COST FOR VARIOUS OPERATIONS IN 45NM [2]. 

 

2.2.  Reconfigurability and Flexibility 

As defined in [3], compute system flexibility refers to the invariance of a system’s normalized 
Compute system design means making trade-offs. One important trade-off is between 
energy-efficiency and application support flexibility. It is a well-known fact that high 
flexibility and energy-efficiency are not possible to achieve simultaneously, i.e., the higher 
the flexibility the better the support for diverse applications, but the lower the energy-
efficiency.  

Actually, compute architecture flexibility, as a measurable quantity, is not well defined. As 
mentioned in [3], compute system flexibility refers to the invariance of a system’s normalized 
performance, energy efficiency, area efficiency (or other secondary metric), to change of the 
application. Therefore, the key goal should be: introducing sufficient architectural 
reconfigurability such that the normalized system performance, energy- and area-efficiency 
are hardly affected. However, this requires in-depth understanding of the reconfigurability 
requirements based on careful analysis of the different applications.  

In CONVOLVE, we aim to add architectural support for neural networks of both the ANN 
(Artificial Neural Network) and SNN (Spiking Neural Network) types. This already is a 
challenging flexibility requirement as SNNs are event-driven and operates based on dynamic 
binary spiking inputs as function of time compared to ANNs whose input are more static and 
often frame-based (i.e., whole input frames are processed, one at a time). In order to stay 
flexible, we will base this support on a reconfigurable architecture template, like a CGRA 
(Coarse Grain Reconfigurable Array) and/or a flexible many-core architecture. Their main 
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difference is that CGRAs typically contain a set of function units, like Adders, Multipliers, and 
Load-Store units, as building blocks for constructing a processing array, while a many-core is 
based on connecting many (specialized) instruction-set processors, like RISC cores, using 
e.g., a mesh NoC (Network-on-Chip). So, their difference mainly concerns the granularity and 
programmability of the used building blocks. In both cases the building blocks can be 
extensively specialized for ANNs and SNNs, or other application domains. Intermediate 
solutions, using e.g., multi-core CGRAs are also possible. More on this in Chapter 4. 

We foresee many challenges, including: 
1. What is the right hardware template architecture for building accelerators? 

2. Can we combine support for SNNs and ANNs in the same instantiation of the templated 
architecture, or do we need separate instantiations? This is far from clear, since ANNs 
use typically frame-based processing, while SNNs are event-based in nature. 

3. What is the degree of reconfiguration we need? Clearly there is a trade-off between 
static and dynamic reconfiguration options, where static is more energy efficient while 
dynamic can easier adapt to dynamic workloads. The latter becomes important since DL 
computing becomes more dynamic, with adaptable networks, early exits, etc. 

4. What support is given for going really ultra-low power, and which power management 
options are available?  

5. Find a suitable programming model and accompanying highly optimizing compiler for 
application acceleration while exploiting all hardware features of the template.  

 
These challenges will be addressed within the CONVOLVE project. 
 

2.3. Data Representation 

Compared to CPU and GPU approaches which can utilize higher precision formats such as 
32-bit single-precision floating-point to infer CNNs, lower-precision is favourable on 
resource-constrained embedded systems due to lower area overhead, lower energy 
consumption, and higher achievable operating frequency. 

The early hardware implementations to infer CNNs utilized 16-bit fixed-point arithmetic, such 
as DianNao [4] and its derivatives [5] [6]. The first generation of Eyeriss [7] also 
implemented 16-bit fixed-point arithmetic while the second generation Eyeriss v2 [8] is 
optimized for 8-bit for activations and weights. This approach is also followed by TPU (Tensor 
Processing Unit) developed by Google, that is designed for a high volume of low-precision 8-
bit computation. On the other end, for very specific tasks such as low-resolution 
classification, arithmetic optimization down to binary was also investigated and developed, 
such as BNN [9]. In [10], we have studied and experimented, that deploying networks with 
lower precision (e.g., less than 8-bit) would require post-training or fine-tuning of the 
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networks to recover the accuracy loss and depending on the task complexity, some 
percentage of quality loss must be taken into account. The key message here is that we need 
to define our reference data representation that works well among the applications that we 
are targeting in CONVOLVE project. This exploration will be carried out in conjunction with 
use-case optimization in WP1 and algorithm development in WP4. 

In addition to arithmetic precision, model compression through pruning can considerably 
improve performance. However, random sparse computation can be complex to handle in 
hardware. Structured sparsity can help with a known sparsity pattern making the hardware 
design easier. Though the accuracy of the models with structured sparsity needs to be 
evaluated, they can benefit from sparsity-aware training. Some surveyed platforms have 
used sparsity (unstructured and structured), showing improved performance and should be a 
future trend for hardware design. 

2.4. Compute-in-Memory  

Computing-In-Memory (CIM) architectures, where computational tasks are performed within 
the memory itself, eliminate unnecessary data movement. Consequently, these 
architectures address the memory bottleneck issue as well as provide higher data 
parallelism. CIM can be an analog or digital CIM [11]. In digital CIM, the SRAM bit cells are used 
to store the weights and the input value is used to activate one row at a time and 
multiplication and addition operations are performed very close to the bitcell as shown in 
Figure 3. In analog CIM, multiple memory rows containing the weights are activated 
simultaneously, and the resulting current from each row is summed up together to produce 
an output voltage that is converted to digital domain using an Analog-to-Digital Converter 
(ADC) resulting in the sum-of-product value of the weight and input. Memristive based CIM 
uses similar principles of current summation as in analog CIM based on SRAM except that the 
memristive elements are programmed with a transconductance value corresponding to the 
weight value. Despite very high energy efficiency compared to conventional compute 
architectures, CIM faces several device technology and design challenges. This section 
highlights the key non-ideality and design challenges, such as non-ideality, data-conversion 
overhead, application mapping, data-flow reconfigurability, cross-layer modeling, and design 
automation, that hinder the widespread deployment of CIM architectures. 
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FIGURE 3. DIGITAL CIM, ANALOG CIM AND CURRENT SUMMATION OPERATION IN A MEMRISTOR BASED CIM. 

 

2.4.1. CIM Design Challenges 

 Non-ideality: Below are some challenges specific to non-ideality posed by CIM architectures.  

1. Variation: Variation is the deviation of the resistance value of the memristor after 
programming from the expected resistance value, which can lead to incorrect 
computations [12]. Variation happens mainly due to fabrication imperfections and the 
stochastic nature of underlying physics. Additionally, traditional CMOS process, voltage 
and temperature (PVT) variations further impact the computational correctness. 

2. Wire Parasitic: Due to the erroneous outputs [13]. For instance, in logic operations, the 
reference and input signals reaching the sensing circuits (for e.g., sense amplifier) suffer 
from delay mismatch caused by different critical paths. Additionally, the wordline (input 
voltages shown in Figure 5) degrades along the path reaching farther columns that 
degrades the associated current output. 

3. Non-Zero Gmin Error: In the digital domain, multiplying any non-zero input with a zero 
weight must result in a zero output. However, when such computation is mapped to 
memristors a non-zero output current is produced when a non-zero input voltage is 
applied to a memristor with Gmin conductance which represents digital zero. This 
phenomenon is known as non-zero Gmin error which causes a functional mismatch 
between the expected digital value and the actual memristive computation result [14]. 

4. Endurance: Memristors suffer from limited endurance due to the destructive nature of 
the programming operations. For instance, in RRAMs, the material assumes presence 
and absence of conductive ions by forming and rupturing the conductive filament during 
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a write operation. However, continuous write operations gradually degrade the ON/OFF 
resistance ratio of the devices, eventually leading to endurance failure. 

5. Device Degradation: Due to stress and ageing, CMOS periphery and memristors in CIM 
suffer from device degradation [15]. These phenomena are aggravated by high voltage of 
operation and temperature. 

6. Read Disturb: Read disturb is a phenomenon where the data stored in the cell is flipped 
by the read operation. 

7. Conductance Drift: The conductance states of the memristors tend to drift with time and 
can eventually lead to unwanted bit-flips [39]. 

Data conversion overhead: Since SRAM based analog and memristive CIM uses 
fundamentally analog operations, interfaces for connecting digital and analog parts are 
required and represent a critical part of the design. Digital-to-Analog Converters (DACs) and 
ADCs are crucial components to handle the CIM inputs and outputs, respectively. 
Conversions performed by ADCs are very critical and challenging due to (1) Analog signals 
have low noise margin and hence, can lead to erroneous output; (2) Analog computation 
heavily relies on memristors and CMOS selectors strength (e.g., for 1T1R), therefore these 
variations induce variation in output current; (3) Quantization error in ADCs increases as the 
number of activation levels increases for higher. Moreover, ADCs usually occupy significantly 
large areas and consume significant power when compared with the total area of the CIM. 
Figure 4 shows that the ADC alone typically dominates CIM die area (>90%) and power 
consumption (>65%); this highlights the challenge ADC design poses for CIM. 

 
FIGURE 4. AREA AND POWER CONSUMPTION SHARE OF CIM DESIGN BLOCKS. 

 
Optimal Application Mapping: Existing CIM research mostly focuses on circuit-level 
optimizations to maximize the macro efficiency and its peak performance. Yet, in reality the 
system efficiency also strongly depends on the mapping efficiency. This mapping efficiency 
quantifies how well a particular workload can exploit the peak computational resources and 
memory resources of a DL processor. This performance metric strongly depends on both the 
system architecture as well as the targeted workload, requiring a holistic system-level view 
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of the complete compute system, its memory hierarchy, its dataflow, and its mapping 
strategies.  

Dataflow Reconfigurability: A single dataflow cannot support the efficient mapping of a wide 
variety of workloads and neural network layer types. Supporting multiple dataflows can 
increase the real efficiency at the system level due to the better mapping capabilities. 
However, higher dataflow flexibility also tends to increase the CIM circuit-level overhead. 
Therefore, it is a challenge for CIM to find the optimal dataflow flexibility trade-off. 

Cross-layer Modelling: To maximize the mapping efficiency, an all-encompassing system 
model is required to be capable of grasp at the same time low level circuit effects, as well as 
system consequences and mapping influences. A reusable, configurable, and standardized 
modelling framework/methodology is required for driving the circuit-level CIM design 
decisions though system-level explorations.  

Design Automation: Current CIM design methodologies are extremely time intensive, due to 
their relying on custom design. Due to the time-to-market (TTM) and engineering hours, this 
precludes pushing forward its industrial adoption. More automated design of such 
architecture can push market adoption and stimulate rapid innovation. 

 

3. Landscape of Hardware Accelerators 

There are many ways of designing computation engines. The figure below shows several 
compute architecture options with a rough indication of their flexibility versus performance 
trade-off (see also Section 2.2).   
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FIGURE 5  LANDSCAPE OF HARDWARE ACCELERATORS. 

CPUs, like the RISC-V (see Section 4.1), are quite generic, and therefore flexible (see [16] for a 
quantitative definition on flexibility). However, their energy-efficiency (measured e.g. in 
pJ/operation) is very low. Specializing pays of e.g., GPUs  and DSPs (Digital Signal 
Processors) are tuned for signal and graphic processing domains. GPUs are also used a lot for 
Deep Learning, since they contain a massive amount of MAC (Multiply-Accumulate) units. 
FPGAs are different. They are based on millions of logic blocks, which can be flexible 
(programmable) connected, and where each block can be configured to mimic a couple of 
gates. One can argue that they are very flexible, but their efficiency is only good if there is a 
right match with the application fine grain level of granularity. We expect CGRAs (Coarse 
Grain Reconfigurable Array; Section 4.2) to be far more efficient when the granularity of 
operations is coarser. Still, they are quite flexible since they can be freely programmed and 
their building blocks (like Multiply-Add units) reconfigurable connected. ASICs  can be 
extremely efficient but are hardly programmable. In best cases we can configure a couple of 
parameters. CIM architectures go even a step further. They typically change the physical 
memory generators by adding support within the memory cell periphery, typically in the 
memory read-out circuitry (but it could also be in the wordline selection circuitry). Both 
digital and analog variants of these CIMs exist. They can potentially be extremely energy 
efficient. 

However, the more specialized the architecture and the implementation, the lower its 
programmability and/or reconfigurability, and therefore its flexibility. In the CONVOLVE 
project we research and implement a compromise. We start with a very flexible platform (see 
WP6), containing one or more RISC cores (likely of the RISC-V type, see Section 4.1). This 
platform will be specialized by adding several accelerators of the CGRA type (Section 4.2) 
,and even more specialized ones, like SRAM and RRAM based CIM (Section 4.3.2 and 4.3.3) 
engines. By embedding these accelerators in a generic SoC (System-on-Chip) template we 
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aim at getting the best of both worlds: sufficient flexibility, while being highly energy-
efficient. 

 

4. Targeted Hardware Accelerators 

In CONVOLVE project, we address the hardware challenges in deploying machine learning on 
edge devices where the systems are resource-constrained in many aspects such as system 
size or dimension, power budget, privacy, etc. Here, we will be working with different 
hardware architectures, ranging from flexible RISC-V software-centric accelerator to 
dedicated hardware accelerators with CGRA structure and CIM paradigm. 

4.1. RISC-V 

As previously mentioned, one of the main challenges in designing hardware accelerators to 
infer DNNs is flexibility. The algorithms in machine learning evolve rapidly, which make 
dedicated hardware accelerators that are specifically designed for certain domains less 
efficient. Software-centric approaches based on RISC-V offer greater flexibility that can 
greatly complement the highly efficient hardware accelerators that we address in the 
CONVOLVE project. Here, along with hardware-centric accelerators that are addressed in 
next sections, we devise the improvement that will be carried on RISC-V. 

 
As power and die size play also important role on edge devices, we selected Snitch [17] core 
as RISC-V subsystem implementation, as depicted in Figure 6. 
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FIGURE 6. OVERVIEW OF ENTIRE RISC-V SNITCH SYSTEM [17]. 

Snitch core is a single-stage out-of-order variant of the RISC-V processor architecture, that 
is designed to provide enhanced security and privacy features for use in Internet of Things 
(IoT) devices and other applications where security is critical. The Snitch core implements 
several security features to protect against a variety of threats such as side-channel attacks, 
information leakage, and tampering. Additionally, the Snitch core is also configurable to 
enable performance and efficiency improvement, such as supporting dynamic voltage and 
frequency scaling, which can help to reduce power consumption and extend the battery life 
of edge devices. 

Depending on the design configuration, Snitch core occupies only between 9 kGE (Gate-
Equivalent) and 21 kGE with all mandatory integer based (RV32I) specification. The complex 
subsystem is already designed to enable multiple instances of cores to improve 
parallelization which is needed to infer CNNs in real-time. Additionally, FPU (Floating-Point 
Unit) is already integrated in the core subsystem to enable us to run complex networks such 
as LSTM (Long Short-Term Memory) and Transformer networks. 

 
Within the course of WP2, we will include more features on Snitch core to further enhance its 
flexibility and performance when inferring CNNs, such as: 
1. Design space exploration to support lower-precision of floating-point format such as 8-

bit floating-point. Here, two standards are proposed: fp<1,5,2> and fp<1,4,3>. The first 
number denotes the number of bits used for sign, the second for exponent, and the latter 
for mantissa. 
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2. In addition to floating-point, we plan to investigate alternative format such as posit, 
where in certain extent it outperforms 8-bit floating-point accuracy with the cost of area. 

3. Design space exploration to extend the Snitch core ISA to improve parallelization inside 
the Snitch core itself, such as sub-word permutations. 

4. Coupling digital-based CIM into the Snitch core pipeline to further reduce energy 
consumption on Matrix-Vector-Multiplication (MVM) operations, which are the  main 
ingredients of CNNs. 

4.2. CGRA 

CGRAs (Coarse Grain Reconfigurable Arrays) consists of a homogeneous or heterogeneous 
grid of programmable PEs (Processing Element) and a static reconfigurable network that can 
pass data to neighbouring PEs [18]. An example is shown in Figure 7. 

 

FIGURE 7. AN EXAMPLE OF CGRA CONTAINING 6 LOAD-STORE UNITS AND MANY OTHER FUNCTION UNITS (FUS). 

In the example a PE is a function unit, like a MAC, Decoding, Register File, or Load-Store unit. 
Units can also be more complex and coarse grain. These CGRAs can be flexible configured to 
support one or more processors, where each processor supports multiple issue slots, and 
issue slots can contain vector (SIMD) units. 

There are also CGRAs where each PE essentially operates is a small independent RISC core, 
and has its own instruction memory and decoding stage, ALU and register file. Some PEs 
have a load-store unit to access the memory that is shared with the host core. On top of 
exploiting Instruction-Level-Parallelism (ILP) inside each PE. Its instruction network allows 
the CGRA to combine multiple PEs into a virtual SIMD-unit to exploit data-level parallelism 
(DLP).  
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CGRAs have several advantages:  

1. They are highly parallel (containing many units), supporting parallelism at various levels 
(data-instruction-/operation-, pipeline, and often even task-level).  

2. They have a high area efficiency, due to its coarseness (as compared to e.g., FPGAs).  

3. Energy efficiency is also good, due to spatial computation using static configuration of 
the communication; also, the computation itself can often be statically mapped.  

4. Finally, they are very flexible, supporting all kinds of computation (unless they are very 
specialized for a certain domain). This wide applicability gives them the potential 
advantage of high-volume production with resulting low cost.  

 
CGRAs also have major challenges; to mention a few important ones: 
 
1. Typically, its switching fabric is expensive. Here we can learn from FPGA interconnect, 

with short and long wires, and by avoiding full crossbar switchboxes. Another way to 
address this issue is by designing the PEs coarser granular, i.e. PE is capable of 
performing larger kernels. This may also be beneficial to efficiently support SNNs in 
addition to ANNs in the same hardware platform. 

2. Another challenge is to determine the right architecture for CGRAs. Some recent efforts 
focus on automated design-space-exploration (DSE) to find a good CGRA architecture for 
a given set of applications [19]. We will use the DSE framework described in D6.1 for 
performing the design-space exploration. Note, that a CGRA may even include CIM units, 
as detailed in Section 4.3. 

3. Perhaps the biggest challenge in CGRA research has been to find a suitable programming 
model and accompanying highly optimizing compiler for application acceleration while 
exploiting all hardware features of the CGRA. One well-explored, although restricted, 
approach is to map a static dataflow graph to the CGRA, while executing the application 
control flow on a tightly coupled host processor [20]. Another promising approach is to 
model the CGRA as an exposed data-path architecture (EDPA) to reuse existing compiler 
developments for VLIW (Very Long Instruction Word) /TTA (Transport Triggered 
Architecture) processors [21].  

 
All above areas will be explored in the CONVOLVE project. 
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4.3. Compute-in-Memory  

4.3.1. SRAM-based Digital CIM  

The state-of-the-art SRAM based CIM proposed in [22] offers high energy and area efficiency 
will be used as the baseline architecture. The high-level architecture of CIM macro shown in 
Figure 8 uses fully digital 12-T SRAM, without sense amplifires and write drivers on bit lines, 
reducing the energy consumption for read and write operations. The size of the CIM macro is 
64kb and consists of 64 1kb MAC arrays and each 1kb MAC array supports 64 4bx4b 
multiplication and accumulation, with 64 4b input and 14b output. Each MAC array consists of 
SRAM bitcell array, bitwise multipliers (NOR), 6 stages adder tree, bit shifter and accumulator. 
During a MAC operation, every clock cycle a single bit input value is multiplied with 4b weights 
stored in SRAM cells. Hence, total 4 cycles are required to complete 4b*4b multiplication. 
Partial sums of multiplications are added together by 6 stages adder tree. 

 
FIGURE 8. SRAM-BASED DIGITAL CIM ARCHITECTURE  

 
In the above digital CIM architecture, the majority of the power is consumed in the adder tree 
and bitwise multiplication operations. Hence, we will focus on reducing the energy 
consumption of partial sum additions with novel techniques. One approach to be explored is 
the use of smaller look-up-tables to minimize activity in the adder tree similar to the 
technique proposed in [23]. However, keeping the area overhead of the LUT size to the 
minimal would be the challenge and we will use custom designed LUT cells. Another 
approach is to optimize the adder tree by utilizing energy and area efficient adders in the 
adder three hierarchy. In addition, we will explore the possibility of using body-biasing to 
reduce the leakage of the rows that are not being assessed. This needs to be done without 
adding the overhead of additional power supplies. Finally, we will also explore a digital-on-top 



D2.1 Report on the Roadmap 
 
 
 

   
  
 

Grant Agreement 101070374          
               Page  |  20 

 

design flow for quickly designing large SRAM based digital CIM and integrate with custom 
digital logic. This will include designing custom SRAM bit cells with integrated bitwise 
compute capabilities that will be instantiated as a library component along with the 
technology vendor provided standard cells in a digital-on-top design flow. Since the digital-
on-top flow allows faster design space exploration, we will explore different architecture 
configurations (i.e. different CIM macro sizes) to achieve the highest Power Performance 
Area (PPA).  
 

4.3.2. CGRA using SRAM-based Digital CIM  

The selection of the supported dataflows at the circuit-level (macros) can dictate the 
efficient support of different ML (Machine Learning) layers on these hardware accelerators at 
the system-level. Therefore, we plan to develop a coarse-grained reconfigurable array (CGRA; 
see Section 4.2), where each compute grain is built from small SRAM-based CIM accelerator 
blocks. With this architecture, we aim to achieve higher system-level efficiency in 
combination with dataflow flexibility. In this accelerator, we plan to optimize both the design 
time parameters such as the number of input/output channels (ICH and OCH in Figure 9), as 
well as the supported dataflow and its runtime management. We plan to explore the 
flexibility-cost trade-off between the mapping performance benefits and the 
reconfigurability hardware overhead of a SRAM-based Digital CGRA. The key idea is to model 
this accelerator and explore it in the ZigZag framework, extended in WP6, for searching the 
optimal trade-off between hardware efficiency and flexibility considering several workloads 
as benchmark. Moreover, to speed up development, we also aim to build an automated 
design flow for this accelerator. By defining a parametrized accelerator configuration at the 
macro level, our flow is expected to generate the corresponding hardware layout with the 
assistance of EDA tools. 
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FIGURE 9.  ILLUSTRATION OF A COARSE GRAIN RECONFIGURABLE ARRAY OF SRAM-BASED CIM ACCELERATOR. THERE ARE MANY 

DIFFERENT DATAFLOWS THAT CAN BE SUPPORTED BY RECONFIGURING THE CONNECTIONS BETWEEN THE MACROS. [THIS FIGURE WILL BE 
REVISED] 

 
We plan to find the balance between circuit-level efficiency and reconfigurability to support 
the ever-changing set of different workloads. This entails a platform with the following 
characteristics: 

• Flexible accelerator dataflow:  A single dataflow cannot efficiently support the 
diverse types of layers; therefore, reconfigurable architectures such as DIANA [24] 
and TinyVers [25] that support multiple dataflows should be the ideal choice. 
However, careful trade-off analysis should be undertaken for reconfigurability vs. 
hardware overhead. This requires a design space exploration for the co-design of 
hardware and software. 

• Flexible arithmetic precision: From the several performance plots, a strong 
correlation between precision and energy or power consumption can be observed. 
Therefore, finding the most optimal precision and training the models with a 
quantization-aware methodology to achieve good accuracy metrics remains a 
primary target. Support for variable precision computation can be beneficial to 
provide flexibility to support different workloads. Moreover, depending on the 
models, asymmetric quantization of weights and activation might be more efficient; 
however, it can increase the complexity of the hardware. 

• Fine grained power management: Several of the existing NN algorithms have so 
much sparsity in their computations with no relevant information during the 
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classification. These irrelevant computations (i.e., null operand or neutral MAC 
operations) can be optimized by turning-off the CIM datapath with a fine-grained 
management to achieve ultra-low power and ultra-low energy operations. 

 
4.3.3. RRAM-based Analog CIM 

RRAM-based CIM accelerator block will be developed in CONVOLVE to realize the key 
objectives of the project. The targeted RRAM-based CIM block has two main architectural 
units: (1) Memory array commonly known as crossbar array unit and periphery unit. The 
crossbar array stores the data and can perform any logic or arithmetic operation. Similarly, 
the periphery unit converts input/output data formats between analog and digital. Moreover, 
the periphery unit can also be used to perform basic logical and arithmetic operations. 

 
4. Crossbar array: Different applications such as neuromorphic computing use primitive 

computational units such as multiply and accumulate (MAC) extensively in order to 
perform matrix-matrix multiplication (MMM). Such primitive units can be easily mapped 
into a RRAM-based crossbar array and perform their operation e.g., Vector Matrix 
Multiplication (VMM) in the CIM crossbar. The VMM is performed by applying a voltage 
vector V = Vj (where j ∈ {1, n}) to a RRAM-crossbar matrix of conductance values G = Gij 
(where i ∈ {1, m}, j ∈ {1, n}) as shown in Figure 10. At any instance, each column performs a 
MAC operation, with the output current vector I, in which each element is Ii = ΣVjxGij . Note 
that all m MAC operations are performed with O(1) time complexity. 

 
FIGURE 10 CROSSBAR STRUCTURE FOR RRAM-BASED CIM ACCELERATOR 

 
5. Periphery: A RRAM-based CIM accelerator needs peripheral circuits to accommodate 

analog-based computing. For example, the following is needed to perform VMM operation 
in CIM: 1) Row-decoder becomes complex as it involves enabling several rows in parallel. 
Also, 1-bit row or word-line drivers need to be replaced by digital-to-analog converters 
(DACs) that convert multi-bit VMM operands into an array of analog voltages. 2) Column 
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periphery circuits performing read operations need to be replaced by analog-to-digital 
converters (ADCs). 3) Control block needs to deal with complex instructions such as 
handling intricacies of multi-operand VMM operations. 

 
Both crossbar and peripheral units of the targeted RRAM-based CIM accelerator need to 
support different optimization knobs which can be used to tune some parameters in order to 
perform trade-off at runtime. Moreover, the RRAM-based CIM accelerator block will support 
proper interface that is supported by the DSE framework that will be developed in the 
CONVOLVE project. 

 
 
5. Building Blocks in Neural Networks 

The accelerators mentioned in the previous section have to support various neural network 
building blocks. Independent from the development of the use-cases in WP1, we survey and 
benchmark various topologies of neural networks that are commonly deployed and 
implemented. We break down the network topologies into building blocks such as layer types 
to give more insight details of the underlying operations needed to map such layer into 
hardware. Table 1 lists various options commonly used in Deep Neural Networks. Here, we 
categorize the building blocks into three categories: (1) standard operations – these building 
blocks are commonly used in various network topologies, and development of such layers are 
driven by the algorithms to improve e.g. accuracy of the networks; (2) efficient operations – 
these building blocks are structured to have some hardware awareness during inference, i.e. 
typically the efficiency is measured by minimizing the operation counts or the parameter 
size; and lastly (3) optimization techniques – here we deal with further optimizations such as 
synapse pruning techniques, quantization, compression, and transformation. Such 
optimizations require hardware support to enable efficient inference.  

In the next sections, we highlight the required building block support for the different use-
cases. 

 
TABLE 1. COMMON BUILDING BLOCKS IN NEURAL NETWORKS. 

Standard 
Operations 

Efficient 
Operations 

Optimization Techniques 

1x1, 3x3, 5x5 or 
larger Convolutions 

Bottleneck 
Structure 

Weight Pruning (fully connected layer) 

Parallel 
Convolutional layers 

Depth-wise 
Separable 
Convolutions 

Weight Pruning (convolutional layer) 
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ReLU, Leaky ReLU, 
Clip ReLU, tanh, 
Sigmoid Activations 

Separable 
Convolutions 

Fixed-point Quantization (activation / weights) 

Average- / Max-
Pooling 

Densely Connected 
Convolutional 
Layers 

Binary/Ternary Quantization 

Concatenation Group Convolutions Power-of-Two Quantization 

Max-out Channel Shuffle Nonuniform-Interval Few-Bit Quantization 

Fully Connected 
Layers 

Dilated 
Convolutions 

Mixed Bit-Width Quantization 

Up-sampling Batch 
Normalization 

Huffman Coding 

Skip Connections Feature Map 
Normalization 

Run Length Coding 

Residual 
Connections 

 Frequency Domain Methods 

Two-staged 
Approach with ROI-
Pooling 

 Matrix Factorization 

Plain RNN  Approximate Units 

Recurrent Layers 
except Plain RNN 

 Transform-Domains 

Non-Maximum 
Suppression 

 Structured Sparse Weights 

Padding  Canonical Signed Digit 

Transpose 
Convolution 

  

 
 

5.1. Use-Case Noise Suppression 

Audio data can be regarded as mostly time series data so in general, recurrent 
architectures/layers are highly relevant in this field. However, there are variations on the 
usage of those in combination with other layers. A full list of desirable of 
layers/activations/abstractions is given by:  



D2.1 Report on the Roadmap 
 
 
 

   
  
 

Grant Agreement 101070374          
               Page  |  25 

 

TABLE 2. REQUIREMENT BUILDING BLOCKS FOR THE USE-CASE NOISE SUPPRESSION. 

Layer Activation Other 

1d convolution  ReLu FFT  

2d convolution tanh  Mel – transform  

GRU sigmoidal Upsampling  

LSTM linear Downsampling  

Dense  Reshape 

Transpose 1d convolution  Expand dimensions  

Transpose 2d convolution   

 
A more general statement could be that all PyTorch supported layers and abstractions (Other 
in the table) should be supported.  

 
5.2. Use-Case Acoustic Scene Analysis 

The use case of acoustic scene analysis also builds on time series data. Hence, recurrent 
layers as well as common feature extraction methods are key components of the proposed 
solutions (Table 3). Ideally, up to 1000 units should be supported for GRU (Gated Recurrent 
Unit), LSTM (Long Short Term Memory) as well as Dense layers. 

 
TABLE 3 REQUIREMENT BUILDING BLOCKS FOR THE USE-CASE OF ACOUSTIC SCENE ANALYSIS. 

 Type Comments 

Layer 1d Convolution Raw audio-based processing 

GRU Encoding time event in the neurons 

LSTM Encoding time event in the neurons 

Dense Classifier read-out 

SNN Event-based neurons, e.g. LIF 

Activation ReLU Commonly used activations 

Tanh Gated activation to enforce stability 
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Sigmoid Gated activation to enforce stability 

Feature 
extraction 

FFT Pre-processing time-series into frequency 
domain 

Mel-transform Pre-processing time-series into time-
frequency resolution  

Other Reshape Restructuring neurons 

Move dimensions Align shape of conv and recurrent/dense 
layers 

 
 
In the scope of the CONVOLVE project, we would like to investigate SNNs for the use-case of 
acoustic scene analysis. Here, SNN layers of comparable size and composed of e.g., leaky 
integrate-and-fire (LIF) neurons could serve as a starting point. Similar to the existing 
solutions, the implementation of recurrent connections should also be possible for SNNs. 

 
Apart from the handling of audio data based on conventional feature extraction methods, the 
processing of raw audio signals with neural networks is an interesting direction of current 
research. To draw on recent successes, 1d convolutions could be targeted as well. 

 
5.3. Use-Case Image-based Perception 

Compared to acoustic use-cases detailed in previous sections, image-based perceptions 
such as image classification or object detection exploit standard network topologies. Thanks 
to the major research contributions in this field, a lot of different network topologies are 
already developed, targeting and optimizing certain aspects of the tasks such as accuracy, 
latency, or even compute demand.  
 
Some examples of neural networks for image-based perception are:  

• MobileNet and its derivatives are designed to minimize the number of compute 
operation. 

• SqueezeNet and its derivatives are designed to minimize the memory size and 
parameter counts. 

• ResNet and its derivatives are designed to improve accuracy by adding residual 
connections. 
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•  Yolo and its derivatives are designed to speed-up object detection by exploiting 
single-stage approach compared to more complex and more accurate two-stage 
approaches such as FPNs (Feature Pyramid Network) and R-CNN (Region-based CNN) 
and its derivatives. 

Therefore, the building blocks that are needed to support inferring such networks are already 
covered at the beginning of this chapter. 
 

5.4. Specific Requirement on Spiking Neural Network Accelerator Components 

 Components to relieve processor(s) of load and consequently save energy are envisaged in 
several architectural areas; many of the principles are derived from previous experience with 
the ARM-based SpiNNaker devices A principal consideration is to address the volume of data 
movement, primarily by reducing the size of the synaptic weight operands.  These operands 
quickly become numerous, requiring 'backing store' (SDRAM) and their transfer for processing 
represents a significant energy cost.  However, they can be quite low resolution so are 
amenable to a degree of compression.  A single value might be stored in (say) 8 (or even 
fewer) bits. 
 
It is intended to assess two possible ways to handle such variables.  The first is to implement 
hardware functional units which could process such data types directly.  Processing could 
then be performed on SIMD vectors within a RISC-V by an extension of the ISA; similar 
extensions have been introduced to earlier ISA for comparable purposes such as 
'multimedia'.  The processing could be done from standard registers by enhancing an existing 
datapath or with a wider coprocessor in a manner similar to x86 MMX/SSE or ARM NEON. 

 A complementary approach is to unpack and translate data representation during the data 
fetch -- and reverse this process if data is being rewritten.  This can be done during and by 
the DMA transfer; the packed data can be expanded as it is cached in a local memory.  
Programmable flexibility of the formats would be included. 
  
An issue with short-format representation is the loss of resolution.  This is typically not a 
serious issue but becomes important when a network is learning, since it is desirable to apply 
many, repeated, very small changes as the network converges to a stable state.  A 
compromise here is to apply larger changes stochastically (probabilistically) which can have a 
closely equivalent effect without the need for large variables.  This requires a ready supply of 
(pseudo) random values; the generation and application of these is much cheaper with 
dedicated hardware. 

  
Lastly, for the purposes of robustness, continuous learning/adaptation and, probably, to 
assist Dynamic Neural Network (DyNN) configuration it is desirable to keep some short-
/medium-term records of past activity so that weight adjustments can be made when a more 
systemic outcome is known.  The exact needs here are still to be determined but there must 
exist an equivalent in biology, it is necessarily fairly simple — although perhaps massively 
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parallel — and it is probably a 'leaky integrator' similar to the spiking neurons but over a longer 
timescale.  One type of support hardware for this type of function could also support the 
neuron firing state evolution.  A semi-autonomous (configurable) unit working close to a 
memory buffer could provide this without costly software intervention. 

 
 
6. Initial Standardize Interface 

The accelerators designed in WP2 will implement standardized interfaces to ensure a 
compositional integration into the system-on-chip (SoC) template. This standardization 
enables a rapid change of the heterogeneous configuration of the SoC. The SoC template and 
the interfaces are specified in the Deliverable D6.1 of WP6. The next section will give a short 
summary on the interfaces. 
 

6.1. SoC Template and Accelerator Integration Levels 

The SoC template consists of a host infrastructure domain that includes a RISC-V host, main 
memory, and peripherals. It is connected to a group of L2-accelerators through high-speed 
on-chip interconnect such as network-on-chip (NoC) or AMBA AXI. These L2-accelerators 
may consist of similar or different types of accelerators. A sample L2-accelerator can be 
found in the compute cluster depicted on the right side of Figure 11. Within this accelerator, 
general-purpose RISC-V cores can be enhanced with L0-accelerators or share TCDM with an 
array of L1-accelerators. Each accelerator has its own gate-able clock and reset domain at 
both the L1 and L2 levels. 
 

We outline three distinct levels of accelerator integration within the SoC template. Each of 
them has different interface requirements: 

• L0: RISC-V co-processor 

• L1: Tightly coupled accelerator 

• L2: Loosely coupled AXI- accelerator 
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FIGURE 11. OVERVIEW OF THE HIGH-LEVEL SOC TEMPLATE WITH THREE ACCELERATOR INTEGRATION LEVELS. 

 
6.2. Standard Interfaces 

The accelerators described in section 4 can make use of the different interfaces provided by 
our platform. All protocols for these interfaces, as mentioned below, are further described in 
the Deliverable D6.1. 

 
6.2.1. L0-Accelerator: Core-V-X Interface 

L0-accelerators are specialized Co-Processors that work closely with a RISC-V core. They 
enable customized instruction set architecture (ISA) extensions to accelerate specific 
workloads such as the neural network building blocks described in Section 5. The core 
offloads any instructions that itself cannot process to the L0-accelerator. L0-Accelerators 
can be attached to the RISC-V PEs via the Core-V-X interface1 
 

6.2.2. L1-Accelerator: TCDM/HCI Data Interface & PERIPH/REGBUS Interface 

L1 accelerators follow the interfaces supported by the Hardware Processing Engines 
(HWPEs)2. Each L1 accelerator has two interfaces, one for streaming in data and one to 

 
1 https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/latest/ 
2 https://hwpe-doc.readthedocs.io/ 
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configure new jobs. The data interface can implement a master of the TCDM or HCI protocol 
and the control interface can implement either a slave of the PERIPH or REGBUS protocol.  

 
6.2.3. L2-Accelerator: AXI4 Interface 

The L2 accelerators employ AXI4 for both data management and control, following ARM's 
AXI4 specification. An accelerator will have two AXI ports, a single slave port allowing 
incoming requests for control, and a single master port allowing outgoing requests for data 
movement. Please note that these most likely will have different ID widths for proper 
interconnect design. 

 
 
7. Summary 

This document details the challenges in designing hardware accelerators for Deep Learning, 
which will be used as baseline for our hardware development in WP2. Prior to defining our 
planned works in designing various types of accelerators, we cluster different types of 
existing hardware accelerators and architectures to give us some insights what we want to 
target in the CONVOLVE project. Two emerging memory options SRAM and RRAM to reduce 
data movements by allowing compute unit implemented in the memory block are detailed as 
our CIM preference on edge devices. Coupled with break-down of neural networks into 
building blocks, we will use this information to refine our hardware designs and architectures 
so that our targeted systems are efficient to handle such workload. Finally, by having 
standardize interface, generation of SoC that composes of different hardware accelerators 
will be speed-up. This also allows us to broaden our design-space exploration of 
infrastructure and accelerator to further optimize our targeted systems in term of power 
consumption, die size, latency, security, etc. 

The table below summarizes the different hardware building blocks that will be developed in 
WP2 with the involved partners: 

TABLE 4 SUMMARY OF DIFFERENT HARDWARE BUILDING BLOCKS. 

ULP block Partner to contribute 

RISC-V BOS 

CGRA TUE 

SRAM-based Digital CiM TUD, TUE, BOS 

Coarser CGRA using SRAM-based Digital CIM KUL, BOS 

RRAM-based (CiM) TUD 

Initial Standardize Interface ETH 
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