
D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 1

Seamless design of smart edge processors

GRANT AGREEMENT NUMBER: 101070374

Deliverable D2.1
Report on the Roadmap

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 2

Title of the deliverable Report on the Roadmap

WP contributing to the deliverable WP 2

Task contributing to the deliverable Task 2.1

Dissemination level RE - Restricted to a group specified by the consortium

Due submission date 01/05/2023

Actual submission date 11/05/2023

Author(s)

Andre Guntoro (BOSCH)

Anteneh Gebregiorgis (TUD)

Guilherme Pereira Paim (KUL)

Gianna Paulin (ETHZ)

Jim Garside (MAN)

Henk Corporaal, Manil Dev Gomony (TUE)

Internal reviewers
Frank Gürkaynak (ETHZ)

Tobias Piechowiak (GAN)

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 3

Document
Version

Date Change

V0.1 10.03.2023 Initial document

V0.2 24.04.2023 Draft for review

V0.3 28.04.2023 Draft for incorporating feedback from internal review

V0.4 29.04.2023

Polishing document and minor changes

Incorporate standard approaches on image-based
perception

V0.9 29.04.2023 PDF ready for submission

V1.0 11.05.2023 Final PDF

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 4

Table of Contents

Deliverable Summary 5

1. Introduction 5

2. Challenges 6

2.1. Energy Efficiency 6

2.2. Reconfigurability and Flexibility 8

2.3. Data Representation 9

2.4. Compute-in-Memory 10

2.4.1. CIM Design Challenges 11

3. Landscape of Hardware Accelerators 13

4. Targeted Hardware Accelerators 15

4.1. RISC-V 15

4.2. CGRA 17

4.3. Compute-in-Memory 19

4.3.1. SRAM-based Digital CIM 19

4.3.2. CGRA using SRAM-based Digital CIM 20

4.3.3. RRAM-based Analog CIM 22

5. Building Blocks in Neural Networks 23

5.1. Use-Case Noise Suppression 24

5.2. Use-Case Acoustic Scene Analysis 25

5.3. Use-Case Image-based Perception 26

5.4. Specific Requirement on Spiking Neural Network Accelerator Components 27

6. Initial Standardize Interface 28

6.1. SoC Template and Accelerator Integration Levels 28

6.2. Standard Interfaces 29

6.2.1. L0-Accelerator: Core-V-X Interface 29

6.2.2. L1-Accelerator: TCDM/HCI Data Interface & PERIPH/REGBUS Interface 29

6.2.3. L2-Accelerator: AXI4 Interface 30

7. Summary 30

Bibliography 31

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 5

Deliverable Summary

The deployment of machine learning is growing exponentially thanks to vast availability of the
data, the compute resources for training, and the advances in training algorithms, along with
the achievable performance/accuracy improvement on more complex tasks. In the last past
years, various approaches to speed-up Deep Neural Networks (DNN) inferences were
developed, ranging from GPU-based (Graphic Processing Unit) solutions which also target
embedded devices (such as NVIDIA Jetson), FPGA (Field Programmable Gate Array)
frameworks with/including their HLS (High-Level Synthesis) approaches, to dedicated ASICs
(Application-Specific Integrated Circuit).

Addressing rapid growing compute requirements and complexity posed by DNNs is
challenging, especially on designing hardware accelerators that can fit future trends. In this
deliverable, we define the micro-architectural building blocks that are served as building
blocks that compose DNNs / CNNs (Convolution Neural Network), viz. the layer types
employed in WP1. This method allows us to break down the hardware requirements for our
targeted accelerators and can improve flexibility of our accelerators to cope with future
demands.

1. Introduction

Emerging and rapid growing Deep Learning (DL) have shown exceptional performance in
addressing complex tasks, such as image classification or object detection, and the rapid
growth in these methodologies has allowed the accuracy to improve continuously thanks to
the more advances in training methods. Whilst the accuracy of such tasks is continuously
improving, thanks to the more complex network topologies that have been developed and
deployed, it imposes challenges in supporting such inference efficiently on resource-
constrained edge devices. Traditional computing platforms such as CPUs and GPUs are not
sufficient to infer such networks in constrained systems due to limited power budgets,
limited area/volume of the systems, real-time and/or latency requirement, etc. Therefore,
for such systems, dedicated hardware accelerators are designed and deployed. Nonetheless,
dedicated hardware accelerators have their own limitation to cope with different network
topologies and are typically optimized towards specific tasks with specific networks.
Therefore, we need to evaluate the network topologies in detail to improve the flexibility of
hardware accelerators and utilize this information in devising hardware architecture for such
accelerators.

This document “D2.1 Report on the Roadmap ” is a deliverable of the Work package No. 2
“Self-configurable modular ULP accelerator blocks”, task T2.1 “Roadmap for energy-efficient,
reconfigurable, and self-healing functional units ” under the task lead of Bosch, sets out the
“Report on the roadmap” including challenges in Chapter 2, landscape of hardware
accelerators in Chapter 3, our target accelerators in Chapter 4, the basic building block
decomposition in Chapter 5, initial standard interface requirements as basis for T2.2 and
WP6 in Chapter 6, as well as the summary in Chapter 7.

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 6

2. Challenges

The compute and memory demands on inferring neural networks pose challenges on
resource-constrained embedded systems. The development of network topologies is mainly
driven by the task complexity, and it mainly uses GPUs as basis of computing brain for
training the networks, validating the accuracy of the deployed networks, and latter inferring
the networks. This is a reasonable approach as most of the pipelines are deployed in GPUs,
including optimization techniques such as compressing the networks, quantizing the weights
and the activations, etc. to make such networks smaller and embedded-friendly.
Nonetheless, deploying such networks on embedded devices requires rethinking of the
computing architecture to address the challenges in resource-constraint embedded devices,
such as limited power budget, latency, security, etc. In this chapter, we discuss the common
challenges when inferring neural networks in such systems.

2.1. Energy Efficiency

One important indicator to evaluate the performance of DL accelerators is their energy
efficiency. This is typically visualized as in Figure 1, where on one axis peak power is used as
measurement and on the other axis its peak performance in terms of operations per second
these accelerators are capable to deliver. The relation of these parameters is at most
interesting as it gives its rough performance estimation, and this value is well-known
accepted in the community. Thus, we can draw baselines to divide and categorize the
efficiency and the limitation of these accelerators, which gives us normalized Ops/W as
efficiency indicator. With state-of-the-art hardware architectures that are mainly based on
digital CMOS design, 1-10 TOPs/W are typically expected. Some optimization techniques such
as data representation (e.g., low bit precision), exploiting sparsity on both weights and
activations, data re-use are the key ingredients to achieve better efficiency.

We can also cluster target application segments based on their power consumption based on
this visualization. E.g., sub-milliwatt for very-low power system, followed by embedded
systems that are targeting around 1-10 watts, autonomous, local data centre, and finally farm
infrastructure. Such clustering method varies and is subject to change depending on the
definition of system on such clusters itself.

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 7

FIGURE 1. PEAK PERFORMANCE VS. PEAK POWER OF DEEP LEARNING ACCELERATORS AND PROCESSORS [1].

When we breakdown on the energy consumed on accelerating DL in details [2], we notice
that most of the energy consumption is driven by moving data from one point (such as main
memory, DRAM) to the accelerator and vice versa. Even for high-precision floating-point
FMAC operation, the memory-to-compute relation is more than 2 orders of magnitude,
depending on DRAM access pattern/behaviour, technology, etc.

This also means that data locality and data reuse will help to reduce energy consumption of
the system. Once we master to exploit these challenges, the emerging memory option to
execute the compute in the memory will further allow us to minimize this energy
consumption.

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 8

FIGURE 2. BREAKDOWN OF ENERGY COST FOR VARIOUS OPERATIONS IN 45NM [2].

2.2. Reconfigurability and Flexibility

As defined in [3], compute system flexibility refers to the invariance of a system’s normalized
Compute system design means making trade-offs. One important trade-off is between
energy-efficiency and application support flexibility. It is a well-known fact that high
flexibility and energy-efficiency are not possible to achieve simultaneously, i.e., the higher
the flexibility the better the support for diverse applications, but the lower the energy-
efficiency.

Actually, compute architecture flexibility, as a measurable quantity, is not well defined. As
mentioned in [3], compute system flexibility refers to the invariance of a system’s normalized
performance, energy efficiency, area efficiency (or other secondary metric), to change of the
application. Therefore, the key goal should be: introducing sufficient architectural
reconfigurability such that the normalized system performance, energy- and area-efficiency
are hardly affected. However, this requires in-depth understanding of the reconfigurability
requirements based on careful analysis of the different applications.

In CONVOLVE, we aim to add architectural support for neural networks of both the ANN
(Artificial Neural Network) and SNN (Spiking Neural Network) types. This already is a
challenging flexibility requirement as SNNs are event-driven and operates based on dynamic
binary spiking inputs as function of time compared to ANNs whose input are more static and
often frame-based (i.e., whole input frames are processed, one at a time). In order to stay
flexible, we will base this support on a reconfigurable architecture template, like a CGRA
(Coarse Grain Reconfigurable Array) and/or a flexible many-core architecture. Their main

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 9

difference is that CGRAs typically contain a set of function units, like Adders, Multipliers, and
Load-Store units, as building blocks for constructing a processing array, while a many-core is
based on connecting many (specialized) instruction-set processors, like RISC cores, using
e.g., a mesh NoC (Network-on-Chip). So, their difference mainly concerns the granularity and
programmability of the used building blocks. In both cases the building blocks can be
extensively specialized for ANNs and SNNs, or other application domains. Intermediate
solutions, using e.g., multi-core CGRAs are also possible. More on this in Chapter 4.

We foresee many challenges, including:
1. What is the right hardware template architecture for building accelerators?

2. Can we combine support for SNNs and ANNs in the same instantiation of the templated
architecture, or do we need separate instantiations? This is far from clear, since ANNs
use typically frame-based processing, while SNNs are event-based in nature.

3. What is the degree of reconfiguration we need? Clearly there is a trade-off between
static and dynamic reconfiguration options, where static is more energy efficient while
dynamic can easier adapt to dynamic workloads. The latter becomes important since DL
computing becomes more dynamic, with adaptable networks, early exits, etc.

4. What support is given for going really ultra-low power, and which power management
options are available?

5. Find a suitable programming model and accompanying highly optimizing compiler for
application acceleration while exploiting all hardware features of the template.

These challenges will be addressed within the CONVOLVE project.

2.3. Data Representation

Compared to CPU and GPU approaches which can utilize higher precision formats such as
32-bit single-precision floating-point to infer CNNs, lower-precision is favourable on
resource-constrained embedded systems due to lower area overhead, lower energy
consumption, and higher achievable operating frequency.

The early hardware implementations to infer CNNs utilized 16-bit fixed-point arithmetic, such
as DianNao [4] and its derivatives [5] [6]. The first generation of Eyeriss [7] also
implemented 16-bit fixed-point arithmetic while the second generation Eyeriss v2 [8] is
optimized for 8-bit for activations and weights. This approach is also followed by TPU (Tensor
Processing Unit) developed by Google, that is designed for a high volume of low-precision 8-
bit computation. On the other end, for very specific tasks such as low-resolution
classification, arithmetic optimization down to binary was also investigated and developed,
such as BNN [9]. In [10], we have studied and experimented, that deploying networks with
lower precision (e.g., less than 8-bit) would require post-training or fine-tuning of the

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 10

networks to recover the accuracy loss and depending on the task complexity, some
percentage of quality loss must be taken into account. The key message here is that we need
to define our reference data representation that works well among the applications that we
are targeting in CONVOLVE project. This exploration will be carried out in conjunction with
use-case optimization in WP1 and algorithm development in WP4.

In addition to arithmetic precision, model compression through pruning can considerably
improve performance. However, random sparse computation can be complex to handle in
hardware. Structured sparsity can help with a known sparsity pattern making the hardware
design easier. Though the accuracy of the models with structured sparsity needs to be
evaluated, they can benefit from sparsity-aware training. Some surveyed platforms have
used sparsity (unstructured and structured), showing improved performance and should be a
future trend for hardware design.

2.4. Compute-in-Memory

Computing-In-Memory (CIM) architectures, where computational tasks are performed within
the memory itself, eliminate unnecessary data movement. Consequently, these
architectures address the memory bottleneck issue as well as provide higher data
parallelism. CIM can be an analog or digital CIM [11]. In digital CIM, the SRAM bit cells are used
to store the weights and the input value is used to activate one row at a time and
multiplication and addition operations are performed very close to the bitcell as shown in
Figure 3. In analog CIM, multiple memory rows containing the weights are activated
simultaneously, and the resulting current from each row is summed up together to produce
an output voltage that is converted to digital domain using an Analog-to-Digital Converter
(ADC) resulting in the sum-of-product value of the weight and input. Memristive based CIM
uses similar principles of current summation as in analog CIM based on SRAM except that the
memristive elements are programmed with a transconductance value corresponding to the
weight value. Despite very high energy efficiency compared to conventional compute
architectures, CIM faces several device technology and design challenges. This section
highlights the key non-ideality and design challenges, such as non-ideality, data-conversion
overhead, application mapping, data-flow reconfigurability, cross-layer modeling, and design
automation, that hinder the widespread deployment of CIM architectures.

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 11

FIGURE 3. DIGITAL CIM, ANALOG CIM AND CURRENT SUMMATION OPERATION IN A MEMRISTOR BASED CIM.

2.4.1. CIM Design Challenges

 Non-ideality: Below are some challenges specific to non-ideality posed by CIM architectures.

1. Variation: Variation is the deviation of the resistance value of the memristor after
programming from the expected resistance value, which can lead to incorrect
computations [12]. Variation happens mainly due to fabrication imperfections and the
stochastic nature of underlying physics. Additionally, traditional CMOS process, voltage
and temperature (PVT) variations further impact the computational correctness.

2. Wire Parasitic: Due to the erroneous outputs [13]. For instance, in logic operations, the
reference and input signals reaching the sensing circuits (for e.g., sense amplifier) suffer
from delay mismatch caused by different critical paths. Additionally, the wordline (input
voltages shown in Figure 5) degrades along the path reaching farther columns that
degrades the associated current output.

3. Non-Zero Gmin Error: In the digital domain, multiplying any non-zero input with a zero
weight must result in a zero output. However, when such computation is mapped to
memristors a non-zero output current is produced when a non-zero input voltage is
applied to a memristor with Gmin conductance which represents digital zero. This
phenomenon is known as non-zero Gmin error which causes a functional mismatch
between the expected digital value and the actual memristive computation result [14].

4. Endurance: Memristors suffer from limited endurance due to the destructive nature of
the programming operations. For instance, in RRAMs, the material assumes presence
and absence of conductive ions by forming and rupturing the conductive filament during

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 12

a write operation. However, continuous write operations gradually degrade the ON/OFF
resistance ratio of the devices, eventually leading to endurance failure.

5. Device Degradation: Due to stress and ageing, CMOS periphery and memristors in CIM
suffer from device degradation [15]. These phenomena are aggravated by high voltage of
operation and temperature.

6. Read Disturb: Read disturb is a phenomenon where the data stored in the cell is flipped
by the read operation.

7. Conductance Drift: The conductance states of the memristors tend to drift with time and
can eventually lead to unwanted bit-flips [39].

Data conversion overhead: Since SRAM based analog and memristive CIM uses
fundamentally analog operations, interfaces for connecting digital and analog parts are
required and represent a critical part of the design. Digital-to-Analog Converters (DACs) and
ADCs are crucial components to handle the CIM inputs and outputs, respectively.
Conversions performed by ADCs are very critical and challenging due to (1) Analog signals
have low noise margin and hence, can lead to erroneous output; (2) Analog computation
heavily relies on memristors and CMOS selectors strength (e.g., for 1T1R), therefore these
variations induce variation in output current; (3) Quantization error in ADCs increases as the
number of activation levels increases for higher. Moreover, ADCs usually occupy significantly
large areas and consume significant power when compared with the total area of the CIM.
Figure 4 shows that the ADC alone typically dominates CIM die area (>90%) and power
consumption (>65%); this highlights the challenge ADC design poses for CIM.

FIGURE 4. AREA AND POWER CONSUMPTION SHARE OF CIM DESIGN BLOCKS.

Optimal Application Mapping: Existing CIM research mostly focuses on circuit-level
optimizations to maximize the macro efficiency and its peak performance. Yet, in reality the
system efficiency also strongly depends on the mapping efficiency. This mapping efficiency
quantifies how well a particular workload can exploit the peak computational resources and
memory resources of a DL processor. This performance metric strongly depends on both the
system architecture as well as the targeted workload, requiring a holistic system-level view

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 13

of the complete compute system, its memory hierarchy, its dataflow, and its mapping
strategies.

Dataflow Reconfigurability: A single dataflow cannot support the efficient mapping of a wide
variety of workloads and neural network layer types. Supporting multiple dataflows can
increase the real efficiency at the system level due to the better mapping capabilities.
However, higher dataflow flexibility also tends to increase the CIM circuit-level overhead.
Therefore, it is a challenge for CIM to find the optimal dataflow flexibility trade-off.

Cross-layer Modelling: To maximize the mapping efficiency, an all-encompassing system
model is required to be capable of grasp at the same time low level circuit effects, as well as
system consequences and mapping influences. A reusable, configurable, and standardized
modelling framework/methodology is required for driving the circuit-level CIM design
decisions though system-level explorations.

Design Automation: Current CIM design methodologies are extremely time intensive, due to
their relying on custom design. Due to the time-to-market (TTM) and engineering hours, this
precludes pushing forward its industrial adoption. More automated design of such
architecture can push market adoption and stimulate rapid innovation.

3. Landscape of Hardware Accelerators

There are many ways of designing computation engines. The figure below shows several
compute architecture options with a rough indication of their flexibility versus performance
trade-off (see also Section 2.2).

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 14

FIGURE 5 LANDSCAPE OF HARDWARE ACCELERATORS.

CPUs, like the RISC-V (see Section 4.1), are quite generic, and therefore flexible (see [16] for a
quantitative definition on flexibility). However, their energy-efficiency (measured e.g. in
pJ/operation) is very low. Specializing pays of e.g., GPUs and DSPs (Digital Signal
Processors) are tuned for signal and graphic processing domains. GPUs are also used a lot for
Deep Learning, since they contain a massive amount of MAC (Multiply-Accumulate) units.
FPGAs are different. They are based on millions of logic blocks, which can be flexible
(programmable) connected, and where each block can be configured to mimic a couple of
gates. One can argue that they are very flexible, but their efficiency is only good if there is a
right match with the application fine grain level of granularity. We expect CGRAs (Coarse
Grain Reconfigurable Array; Section 4.2) to be far more efficient when the granularity of
operations is coarser. Still, they are quite flexible since they can be freely programmed and
their building blocks (like Multiply-Add units) reconfigurable connected. ASICs can be
extremely efficient but are hardly programmable. In best cases we can configure a couple of
parameters. CIM architectures go even a step further. They typically change the physical
memory generators by adding support within the memory cell periphery, typically in the
memory read-out circuitry (but it could also be in the wordline selection circuitry). Both
digital and analog variants of these CIMs exist. They can potentially be extremely energy
efficient.

However, the more specialized the architecture and the implementation, the lower its
programmability and/or reconfigurability, and therefore its flexibility. In the CONVOLVE
project we research and implement a compromise. We start with a very flexible platform (see
WP6), containing one or more RISC cores (likely of the RISC-V type, see Section 4.1). This
platform will be specialized by adding several accelerators of the CGRA type (Section 4.2)
,and even more specialized ones, like SRAM and RRAM based CIM (Section 4.3.2 and 4.3.3)
engines. By embedding these accelerators in a generic SoC (System-on-Chip) template we

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 15

aim at getting the best of both worlds: sufficient flexibility, while being highly energy-
efficient.

4. Targeted Hardware Accelerators

In CONVOLVE project, we address the hardware challenges in deploying machine learning on
edge devices where the systems are resource-constrained in many aspects such as system
size or dimension, power budget, privacy, etc. Here, we will be working with different
hardware architectures, ranging from flexible RISC-V software-centric accelerator to
dedicated hardware accelerators with CGRA structure and CIM paradigm.

4.1. RISC-V

As previously mentioned, one of the main challenges in designing hardware accelerators to
infer DNNs is flexibility. The algorithms in machine learning evolve rapidly, which make
dedicated hardware accelerators that are specifically designed for certain domains less
efficient. Software-centric approaches based on RISC-V offer greater flexibility that can
greatly complement the highly efficient hardware accelerators that we address in the
CONVOLVE project. Here, along with hardware-centric accelerators that are addressed in
next sections, we devise the improvement that will be carried on RISC-V.

As power and die size play also important role on edge devices, we selected Snitch [17] core
as RISC-V subsystem implementation, as depicted in Figure 6.

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 16

FIGURE 6. OVERVIEW OF ENTIRE RISC-V SNITCH SYSTEM [17].

Snitch core is a single-stage out-of-order variant of the RISC-V processor architecture, that
is designed to provide enhanced security and privacy features for use in Internet of Things
(IoT) devices and other applications where security is critical. The Snitch core implements
several security features to protect against a variety of threats such as side-channel attacks,
information leakage, and tampering. Additionally, the Snitch core is also configurable to
enable performance and efficiency improvement, such as supporting dynamic voltage and
frequency scaling, which can help to reduce power consumption and extend the battery life
of edge devices.

Depending on the design configuration, Snitch core occupies only between 9 kGE (Gate-
Equivalent) and 21 kGE with all mandatory integer based (RV32I) specification. The complex
subsystem is already designed to enable multiple instances of cores to improve
parallelization which is needed to infer CNNs in real-time. Additionally, FPU (Floating-Point
Unit) is already integrated in the core subsystem to enable us to run complex networks such
as LSTM (Long Short-Term Memory) and Transformer networks.

Within the course of WP2, we will include more features on Snitch core to further enhance its
flexibility and performance when inferring CNNs, such as:
1. Design space exploration to support lower-precision of floating-point format such as 8-

bit floating-point. Here, two standards are proposed: fp<1,5,2> and fp<1,4,3>. The first
number denotes the number of bits used for sign, the second for exponent, and the latter
for mantissa.

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 17

2. In addition to floating-point, we plan to investigate alternative format such as posit,
where in certain extent it outperforms 8-bit floating-point accuracy with the cost of area.

3. Design space exploration to extend the Snitch core ISA to improve parallelization inside
the Snitch core itself, such as sub-word permutations.

4. Coupling digital-based CIM into the Snitch core pipeline to further reduce energy
consumption on Matrix-Vector-Multiplication (MVM) operations, which are the main
ingredients of CNNs.

4.2. CGRA

CGRAs (Coarse Grain Reconfigurable Arrays) consists of a homogeneous or heterogeneous
grid of programmable PEs (Processing Element) and a static reconfigurable network that can
pass data to neighbouring PEs [18]. An example is shown in Figure 7.

FIGURE 7. AN EXAMPLE OF CGRA CONTAINING 6 LOAD-STORE UNITS AND MANY OTHER FUNCTION UNITS (FUS).

In the example a PE is a function unit, like a MAC, Decoding, Register File, or Load-Store unit.
Units can also be more complex and coarse grain. These CGRAs can be flexible configured to
support one or more processors, where each processor supports multiple issue slots, and
issue slots can contain vector (SIMD) units.

There are also CGRAs where each PE essentially operates is a small independent RISC core,
and has its own instruction memory and decoding stage, ALU and register file. Some PEs
have a load-store unit to access the memory that is shared with the host core. On top of
exploiting Instruction-Level-Parallelism (ILP) inside each PE. Its instruction network allows
the CGRA to combine multiple PEs into a virtual SIMD-unit to exploit data-level parallelism
(DLP).

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 18

CGRAs have several advantages:

1. They are highly parallel (containing many units), supporting parallelism at various levels
(data-instruction-/operation-, pipeline, and often even task-level).

2. They have a high area efficiency, due to its coarseness (as compared to e.g., FPGAs).

3. Energy efficiency is also good, due to spatial computation using static configuration of
the communication; also, the computation itself can often be statically mapped.

4. Finally, they are very flexible, supporting all kinds of computation (unless they are very
specialized for a certain domain). This wide applicability gives them the potential
advantage of high-volume production with resulting low cost.

CGRAs also have major challenges; to mention a few important ones:

1. Typically, its switching fabric is expensive. Here we can learn from FPGA interconnect,

with short and long wires, and by avoiding full crossbar switchboxes. Another way to
address this issue is by designing the PEs coarser granular, i.e. PE is capable of
performing larger kernels. This may also be beneficial to efficiently support SNNs in
addition to ANNs in the same hardware platform.

2. Another challenge is to determine the right architecture for CGRAs. Some recent efforts
focus on automated design-space-exploration (DSE) to find a good CGRA architecture for
a given set of applications [19]. We will use the DSE framework described in D6.1 for
performing the design-space exploration. Note, that a CGRA may even include CIM units,
as detailed in Section 4.3.

3. Perhaps the biggest challenge in CGRA research has been to find a suitable programming
model and accompanying highly optimizing compiler for application acceleration while
exploiting all hardware features of the CGRA. One well-explored, although restricted,
approach is to map a static dataflow graph to the CGRA, while executing the application
control flow on a tightly coupled host processor [20]. Another promising approach is to
model the CGRA as an exposed data-path architecture (EDPA) to reuse existing compiler
developments for VLIW (Very Long Instruction Word) /TTA (Transport Triggered
Architecture) processors [21].

All above areas will be explored in the CONVOLVE project.

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 19

4.3. Compute-in-Memory

4.3.1. SRAM-based Digital CIM

The state-of-the-art SRAM based CIM proposed in [22] offers high energy and area efficiency
will be used as the baseline architecture. The high-level architecture of CIM macro shown in
Figure 8 uses fully digital 12-T SRAM, without sense amplifires and write drivers on bit lines,
reducing the energy consumption for read and write operations. The size of the CIM macro is
64kb and consists of 64 1kb MAC arrays and each 1kb MAC array supports 64 4bx4b
multiplication and accumulation, with 64 4b input and 14b output. Each MAC array consists of
SRAM bitcell array, bitwise multipliers (NOR), 6 stages adder tree, bit shifter and accumulator.
During a MAC operation, every clock cycle a single bit input value is multiplied with 4b weights
stored in SRAM cells. Hence, total 4 cycles are required to complete 4b*4b multiplication.
Partial sums of multiplications are added together by 6 stages adder tree.

FIGURE 8. SRAM-BASED DIGITAL CIM ARCHITECTURE

In the above digital CIM architecture, the majority of the power is consumed in the adder tree
and bitwise multiplication operations. Hence, we will focus on reducing the energy
consumption of partial sum additions with novel techniques. One approach to be explored is
the use of smaller look-up-tables to minimize activity in the adder tree similar to the
technique proposed in [23]. However, keeping the area overhead of the LUT size to the
minimal would be the challenge and we will use custom designed LUT cells. Another
approach is to optimize the adder tree by utilizing energy and area efficient adders in the
adder three hierarchy. In addition, we will explore the possibility of using body-biasing to
reduce the leakage of the rows that are not being assessed. This needs to be done without
adding the overhead of additional power supplies. Finally, we will also explore a digital-on-top

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 20

design flow for quickly designing large SRAM based digital CIM and integrate with custom
digital logic. This will include designing custom SRAM bit cells with integrated bitwise
compute capabilities that will be instantiated as a library component along with the
technology vendor provided standard cells in a digital-on-top design flow. Since the digital-
on-top flow allows faster design space exploration, we will explore different architecture
configurations (i.e. different CIM macro sizes) to achieve the highest Power Performance
Area (PPA).

4.3.2. CGRA using SRAM-based Digital CIM

The selection of the supported dataflows at the circuit-level (macros) can dictate the
efficient support of different ML (Machine Learning) layers on these hardware accelerators at
the system-level. Therefore, we plan to develop a coarse-grained reconfigurable array (CGRA;
see Section 4.2), where each compute grain is built from small SRAM-based CIM accelerator
blocks. With this architecture, we aim to achieve higher system-level efficiency in
combination with dataflow flexibility. In this accelerator, we plan to optimize both the design
time parameters such as the number of input/output channels (ICH and OCH in Figure 9), as
well as the supported dataflow and its runtime management. We plan to explore the
flexibility-cost trade-off between the mapping performance benefits and the
reconfigurability hardware overhead of a SRAM-based Digital CGRA. The key idea is to model
this accelerator and explore it in the ZigZag framework, extended in WP6, for searching the
optimal trade-off between hardware efficiency and flexibility considering several workloads
as benchmark. Moreover, to speed up development, we also aim to build an automated
design flow for this accelerator. By defining a parametrized accelerator configuration at the
macro level, our flow is expected to generate the corresponding hardware layout with the
assistance of EDA tools.

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 21

FIGURE 9. ILLUSTRATION OF A COARSE GRAIN RECONFIGURABLE ARRAY OF SRAM-BASED CIM ACCELERATOR. THERE ARE MANY

DIFFERENT DATAFLOWS THAT CAN BE SUPPORTED BY RECONFIGURING THE CONNECTIONS BETWEEN THE MACROS. [THIS FIGURE WILL BE
REVISED]

We plan to find the balance between circuit-level efficiency and reconfigurability to support
the ever-changing set of different workloads. This entails a platform with the following
characteristics:

• Flexible accelerator dataflow: A single dataflow cannot efficiently support the
diverse types of layers; therefore, reconfigurable architectures such as DIANA [24]
and TinyVers [25] that support multiple dataflows should be the ideal choice.
However, careful trade-off analysis should be undertaken for reconfigurability vs.
hardware overhead. This requires a design space exploration for the co-design of
hardware and software.

• Flexible arithmetic precision: From the several performance plots, a strong
correlation between precision and energy or power consumption can be observed.
Therefore, finding the most optimal precision and training the models with a
quantization-aware methodology to achieve good accuracy metrics remains a
primary target. Support for variable precision computation can be beneficial to
provide flexibility to support different workloads. Moreover, depending on the
models, asymmetric quantization of weights and activation might be more efficient;
however, it can increase the complexity of the hardware.

• Fine grained power management: Several of the existing NN algorithms have so
much sparsity in their computations with no relevant information during the

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 22

classification. These irrelevant computations (i.e., null operand or neutral MAC
operations) can be optimized by turning-off the CIM datapath with a fine-grained
management to achieve ultra-low power and ultra-low energy operations.

4.3.3. RRAM-based Analog CIM

RRAM-based CIM accelerator block will be developed in CONVOLVE to realize the key
objectives of the project. The targeted RRAM-based CIM block has two main architectural
units: (1) Memory array commonly known as crossbar array unit and periphery unit. The
crossbar array stores the data and can perform any logic or arithmetic operation. Similarly,
the periphery unit converts input/output data formats between analog and digital. Moreover,
the periphery unit can also be used to perform basic logical and arithmetic operations.

4. Crossbar array: Different applications such as neuromorphic computing use primitive

computational units such as multiply and accumulate (MAC) extensively in order to
perform matrix-matrix multiplication (MMM). Such primitive units can be easily mapped
into a RRAM-based crossbar array and perform their operation e.g., Vector Matrix
Multiplication (VMM) in the CIM crossbar. The VMM is performed by applying a voltage
vector V = Vj (where j ∈ {1, n}) to a RRAM-crossbar matrix of conductance values G = Gij
(where i ∈ {1, m}, j ∈ {1, n}) as shown in Figure 10. At any instance, each column performs a
MAC operation, with the output current vector I, in which each element is Ii = ΣVjxGij . Note
that all m MAC operations are performed with O(1) time complexity.

FIGURE 10 CROSSBAR STRUCTURE FOR RRAM-BASED CIM ACCELERATOR

5. Periphery: A RRAM-based CIM accelerator needs peripheral circuits to accommodate

analog-based computing. For example, the following is needed to perform VMM operation
in CIM: 1) Row-decoder becomes complex as it involves enabling several rows in parallel.
Also, 1-bit row or word-line drivers need to be replaced by digital-to-analog converters
(DACs) that convert multi-bit VMM operands into an array of analog voltages. 2) Column

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 23

periphery circuits performing read operations need to be replaced by analog-to-digital
converters (ADCs). 3) Control block needs to deal with complex instructions such as
handling intricacies of multi-operand VMM operations.

Both crossbar and peripheral units of the targeted RRAM-based CIM accelerator need to
support different optimization knobs which can be used to tune some parameters in order to
perform trade-off at runtime. Moreover, the RRAM-based CIM accelerator block will support
proper interface that is supported by the DSE framework that will be developed in the
CONVOLVE project.

5. Building Blocks in Neural Networks

The accelerators mentioned in the previous section have to support various neural network
building blocks. Independent from the development of the use-cases in WP1, we survey and
benchmark various topologies of neural networks that are commonly deployed and
implemented. We break down the network topologies into building blocks such as layer types
to give more insight details of the underlying operations needed to map such layer into
hardware. Table 1 lists various options commonly used in Deep Neural Networks. Here, we
categorize the building blocks into three categories: (1) standard operations – these building
blocks are commonly used in various network topologies, and development of such layers are
driven by the algorithms to improve e.g. accuracy of the networks; (2) efficient operations –
these building blocks are structured to have some hardware awareness during inference, i.e.
typically the efficiency is measured by minimizing the operation counts or the parameter
size; and lastly (3) optimization techniques – here we deal with further optimizations such as
synapse pruning techniques, quantization, compression, and transformation. Such
optimizations require hardware support to enable efficient inference.

In the next sections, we highlight the required building block support for the different use-
cases.

TABLE 1. COMMON BUILDING BLOCKS IN NEURAL NETWORKS.

Standard
Operations

Efficient
Operations

Optimization Techniques

1x1, 3x3, 5x5 or
larger Convolutions

Bottleneck
Structure

Weight Pruning (fully connected layer)

Parallel
Convolutional layers

Depth-wise
Separable
Convolutions

Weight Pruning (convolutional layer)

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 24

ReLU, Leaky ReLU,
Clip ReLU, tanh,
Sigmoid Activations

Separable
Convolutions

Fixed-point Quantization (activation / weights)

Average- / Max-
Pooling

Densely Connected
Convolutional
Layers

Binary/Ternary Quantization

Concatenation Group Convolutions Power-of-Two Quantization

Max-out Channel Shuffle Nonuniform-Interval Few-Bit Quantization

Fully Connected
Layers

Dilated
Convolutions

Mixed Bit-Width Quantization

Up-sampling Batch
Normalization

Huffman Coding

Skip Connections Feature Map
Normalization

Run Length Coding

Residual
Connections

 Frequency Domain Methods

Two-staged
Approach with ROI-
Pooling

 Matrix Factorization

Plain RNN Approximate Units

Recurrent Layers
except Plain RNN

 Transform-Domains

Non-Maximum
Suppression

 Structured Sparse Weights

Padding Canonical Signed Digit

Transpose
Convolution

5.1. Use-Case Noise Suppression

Audio data can be regarded as mostly time series data so in general, recurrent
architectures/layers are highly relevant in this field. However, there are variations on the
usage of those in combination with other layers. A full list of desirable of
layers/activations/abstractions is given by:

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 25

TABLE 2. REQUIREMENT BUILDING BLOCKS FOR THE USE-CASE NOISE SUPPRESSION.

Layer Activation Other

1d convolution ReLu FFT

2d convolution tanh Mel – transform

GRU sigmoidal Upsampling

LSTM linear Downsampling

Dense Reshape

Transpose 1d convolution Expand dimensions

Transpose 2d convolution

A more general statement could be that all PyTorch supported layers and abstractions (Other
in the table) should be supported.

5.2. Use-Case Acoustic Scene Analysis

The use case of acoustic scene analysis also builds on time series data. Hence, recurrent
layers as well as common feature extraction methods are key components of the proposed
solutions (Table 3). Ideally, up to 1000 units should be supported for GRU (Gated Recurrent
Unit), LSTM (Long Short Term Memory) as well as Dense layers.

TABLE 3 REQUIREMENT BUILDING BLOCKS FOR THE USE-CASE OF ACOUSTIC SCENE ANALYSIS.

 Type Comments

Layer 1d Convolution Raw audio-based processing

GRU Encoding time event in the neurons

LSTM Encoding time event in the neurons

Dense Classifier read-out

SNN Event-based neurons, e.g. LIF

Activation ReLU Commonly used activations

Tanh Gated activation to enforce stability

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 26

Sigmoid Gated activation to enforce stability

Feature
extraction

FFT Pre-processing time-series into frequency
domain

Mel-transform Pre-processing time-series into time-
frequency resolution

Other Reshape Restructuring neurons

Move dimensions Align shape of conv and recurrent/dense
layers

In the scope of the CONVOLVE project, we would like to investigate SNNs for the use-case of
acoustic scene analysis. Here, SNN layers of comparable size and composed of e.g., leaky
integrate-and-fire (LIF) neurons could serve as a starting point. Similar to the existing
solutions, the implementation of recurrent connections should also be possible for SNNs.

Apart from the handling of audio data based on conventional feature extraction methods, the
processing of raw audio signals with neural networks is an interesting direction of current
research. To draw on recent successes, 1d convolutions could be targeted as well.

5.3. Use-Case Image-based Perception

Compared to acoustic use-cases detailed in previous sections, image-based perceptions
such as image classification or object detection exploit standard network topologies. Thanks
to the major research contributions in this field, a lot of different network topologies are
already developed, targeting and optimizing certain aspects of the tasks such as accuracy,
latency, or even compute demand.

Some examples of neural networks for image-based perception are:

• MobileNet and its derivatives are designed to minimize the number of compute
operation.

• SqueezeNet and its derivatives are designed to minimize the memory size and
parameter counts.

• ResNet and its derivatives are designed to improve accuracy by adding residual
connections.

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 27

• Yolo and its derivatives are designed to speed-up object detection by exploiting
single-stage approach compared to more complex and more accurate two-stage
approaches such as FPNs (Feature Pyramid Network) and R-CNN (Region-based CNN)
and its derivatives.

Therefore, the building blocks that are needed to support inferring such networks are already
covered at the beginning of this chapter.

5.4. Specific Requirement on Spiking Neural Network Accelerator Components

 Components to relieve processor(s) of load and consequently save energy are envisaged in
several architectural areas; many of the principles are derived from previous experience with
the ARM-based SpiNNaker devices A principal consideration is to address the volume of data
movement, primarily by reducing the size of the synaptic weight operands. These operands
quickly become numerous, requiring 'backing store' (SDRAM) and their transfer for processing
represents a significant energy cost. However, they can be quite low resolution so are
amenable to a degree of compression. A single value might be stored in (say) 8 (or even
fewer) bits.

It is intended to assess two possible ways to handle such variables. The first is to implement
hardware functional units which could process such data types directly. Processing could
then be performed on SIMD vectors within a RISC-V by an extension of the ISA; similar
extensions have been introduced to earlier ISA for comparable purposes such as
'multimedia'. The processing could be done from standard registers by enhancing an existing
datapath or with a wider coprocessor in a manner similar to x86 MMX/SSE or ARM NEON.

 A complementary approach is to unpack and translate data representation during the data
fetch -- and reverse this process if data is being rewritten. This can be done during and by
the DMA transfer; the packed data can be expanded as it is cached in a local memory.
Programmable flexibility of the formats would be included.

An issue with short-format representation is the loss of resolution. This is typically not a
serious issue but becomes important when a network is learning, since it is desirable to apply
many, repeated, very small changes as the network converges to a stable state. A
compromise here is to apply larger changes stochastically (probabilistically) which can have a
closely equivalent effect without the need for large variables. This requires a ready supply of
(pseudo) random values; the generation and application of these is much cheaper with
dedicated hardware.

Lastly, for the purposes of robustness, continuous learning/adaptation and, probably, to
assist Dynamic Neural Network (DyNN) configuration it is desirable to keep some short-
/medium-term records of past activity so that weight adjustments can be made when a more
systemic outcome is known. The exact needs here are still to be determined but there must
exist an equivalent in biology, it is necessarily fairly simple — although perhaps massively

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 28

parallel — and it is probably a 'leaky integrator' similar to the spiking neurons but over a longer
timescale. One type of support hardware for this type of function could also support the
neuron firing state evolution. A semi-autonomous (configurable) unit working close to a
memory buffer could provide this without costly software intervention.

6. Initial Standardize Interface

The accelerators designed in WP2 will implement standardized interfaces to ensure a
compositional integration into the system-on-chip (SoC) template. This standardization
enables a rapid change of the heterogeneous configuration of the SoC. The SoC template and
the interfaces are specified in the Deliverable D6.1 of WP6. The next section will give a short
summary on the interfaces.

6.1. SoC Template and Accelerator Integration Levels

The SoC template consists of a host infrastructure domain that includes a RISC-V host, main
memory, and peripherals. It is connected to a group of L2-accelerators through high-speed
on-chip interconnect such as network-on-chip (NoC) or AMBA AXI. These L2-accelerators
may consist of similar or different types of accelerators. A sample L2-accelerator can be
found in the compute cluster depicted on the right side of Figure 11. Within this accelerator,
general-purpose RISC-V cores can be enhanced with L0-accelerators or share TCDM with an
array of L1-accelerators. Each accelerator has its own gate-able clock and reset domain at
both the L1 and L2 levels.

We outline three distinct levels of accelerator integration within the SoC template. Each of
them has different interface requirements:

• L0: RISC-V co-processor

• L1: Tightly coupled accelerator

• L2: Loosely coupled AXI- accelerator

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 29

FIGURE 11. OVERVIEW OF THE HIGH-LEVEL SOC TEMPLATE WITH THREE ACCELERATOR INTEGRATION LEVELS.

6.2. Standard Interfaces

The accelerators described in section 4 can make use of the different interfaces provided by
our platform. All protocols for these interfaces, as mentioned below, are further described in
the Deliverable D6.1.

6.2.1. L0-Accelerator: Core-V-X Interface

L0-accelerators are specialized Co-Processors that work closely with a RISC-V core. They
enable customized instruction set architecture (ISA) extensions to accelerate specific
workloads such as the neural network building blocks described in Section 5. The core
offloads any instructions that itself cannot process to the L0-accelerator. L0-Accelerators
can be attached to the RISC-V PEs via the Core-V-X interface1

6.2.2. L1-Accelerator: TCDM/HCI Data Interface & PERIPH/REGBUS Interface

L1 accelerators follow the interfaces supported by the Hardware Processing Engines
(HWPEs)2. Each L1 accelerator has two interfaces, one for streaming in data and one to

1 https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/latest/
2 https://hwpe-doc.readthedocs.io/

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 30

configure new jobs. The data interface can implement a master of the TCDM or HCI protocol
and the control interface can implement either a slave of the PERIPH or REGBUS protocol.

6.2.3. L2-Accelerator: AXI4 Interface

The L2 accelerators employ AXI4 for both data management and control, following ARM's
AXI4 specification. An accelerator will have two AXI ports, a single slave port allowing
incoming requests for control, and a single master port allowing outgoing requests for data
movement. Please note that these most likely will have different ID widths for proper
interconnect design.

7. Summary

This document details the challenges in designing hardware accelerators for Deep Learning,
which will be used as baseline for our hardware development in WP2. Prior to defining our
planned works in designing various types of accelerators, we cluster different types of
existing hardware accelerators and architectures to give us some insights what we want to
target in the CONVOLVE project. Two emerging memory options SRAM and RRAM to reduce
data movements by allowing compute unit implemented in the memory block are detailed as
our CIM preference on edge devices. Coupled with break-down of neural networks into
building blocks, we will use this information to refine our hardware designs and architectures
so that our targeted systems are efficient to handle such workload. Finally, by having
standardize interface, generation of SoC that composes of different hardware accelerators
will be speed-up. This also allows us to broaden our design-space exploration of
infrastructure and accelerator to further optimize our targeted systems in term of power
consumption, die size, latency, security, etc.

The table below summarizes the different hardware building blocks that will be developed in
WP2 with the involved partners:

TABLE 4 SUMMARY OF DIFFERENT HARDWARE BUILDING BLOCKS.

ULP block Partner to contribute

RISC-V BOS

CGRA TUE

SRAM-based Digital CiM TUD, TUE, BOS

Coarser CGRA using SRAM-based Digital CIM KUL, BOS

RRAM-based (CiM) TUD

Initial Standardize Interface ETH

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 31

Bibliography

[1] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi and J. Kepner, “AI

Accelerator Survey and Trends,” in 2021 IEEE High Performance Extreme Computing
Conference (HPEC) (2021).

[2] M. Horowitz, “Computing's energy problem (and what we can do about it),” in IEEE
International Solid-State Circuits Conference (ISSCC), 2014.

[3] Shihua Huang, Luc Waeijen, and Henk Corporaal, “How Flexible is Your Computing
System?,” ACM Trans. Embed. Comput. Syst., 2022.

[4] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen and O. Temam, “DianNao: A Small-
Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning,” Association
for Computing Machinery, 2014.

[5] Y. Chen et.al,, “DaDianNao: A Machine-Learning Supercomputer,” in IEEE/ACM
International Symposium on Microarchitecture, 2014.

[6] D. Liu et.al.,, “PuDianNao: A Polyvalent Machine Learning AcceleratorD. Liu et al.,”
Association for Computing Machinery, 2015.

[7] Y.-H. Chen, J. Emer and V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient
Dataflow,” IEEE Journal of Solid-State Circuits, 2017.

[8] Y.-H. Chen, J. Emer and V. Sze, “Eyeriss v2: A Flexible Accelerator for Emerging Deep
Neural Networks on Mobile Devices,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 2019.

[9] M. Cournariaux et. al.,, “Binarized Neural Networks: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1,” in NeurIPS, 2017.

[10] S. Vogel, A. Guntoro and G. Ascheid, “Self-Supervised Quantization of Pre-Trained
Neural Networks for Multiplierless Acceleration,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2019.

[11] J. -s. Seo et al., “"Digital Versus Analog Artificial Intelligence Accelerators: Advances,
trends, and emerging designs,",” IEEE Solid-State Circuits Magazine, vol. 14, no. 3, pp. 65-
79, , Summer 2022.

[12] J.-H. Lee et.al,, “Exploring cycle-to-cycle and device-todevice variation tolerance in
MLC storage-based neural,” in TED, 2019.

[13] Y. Jeong et.al,, “Parasitic effect analysis in memristorarray-based neuromorphic
systems,” in Nanotech, 2018.

[14] P. Chen et.al, , “Technological Benchmark of Analog,” in IDT, 2019.
[15] M. Fieback et.al,, “Defects, fault modeling, and test development framework for rrams,”

in JETC, 2022.

D2.1 Report on the Roadmap

Grant Agreement 101070374
 Page | 32

[16] Shihua Huang, Luc Waeijen, Henk Corporaal, “How Flexible is Your Computing
System?,” ACM Transactions on Embedded Computing Systems, vol. 21, no. 4, pp. 1-41,
2022.

[17] F. Zaruba, F. Schuiki, T. Hoefler and L. Benini, “Snitch: A Tiny Pseudo Dual-Issue
Processor for Area and Energy Efficient Execution of Floating-Point Intensive
Workloads,” in IEEE Transactions on Computers, 2021.

[18] Corporaal, H., & de Bruin, E., “What is a CGRA?,” ACM/SIGDA e-newsletter, 2023.
[19] C. Tan and et.al, “AURORA: Automated Refinement of Coarse-Grained Reconfigurable

Accelerators,” in DATE, 2021.
[20] J. Weng, S. Liu, D. Kupsh and T. Nowatzki, “Unifying Spatial Accelerator Compilation

With Idiomatic and Modular Transformations,” in IEEE Micro, 2022.
[21] Kanishkan Vadivel, Roel Jordans, Sander Stujik, Henk Corporaal, Pekka Jääskeläinen,

and Heikki Kultala, “Towards Efficient Code Generation for Exposed Datapath
Architectures,” in SCOPES, 2019.

[22] e. H. Fujiwara, “A 5-nm 254-tops/w 221-tops/mm2 fully-digital computing-in-memory
macro supporting wide-range dynamic-voltage frequency scaling and simultaneous
mac and write operations,” in ISSCC, 2022.

[23] e. C.-F. Lee, “A 12nm 121-tops/w 41.6-tops/mm2 all digital full precision sram-based
compute-in-memory with configurable bit-width for ai edge applications,” in VLSI
Technology and Circuits, 2022.

[24] K. Ueyoshi et al., “DIANA: An End-to-End Energy-Efficient Digital and ANAlog Hybrid
Neural Network SoC,” International Solid- State Circuits Conference (ISSCC), 2022.

[25] V. Jain, S. Giraldo, J. D. Roose, B. Boons, L. Mei and M. Verhelst, “TinyVers: A 0.8-17
TOPS/W, 1.7 μW-20 mW, Tiny Versatile System-on-chip with State-Retentive eMRAM
for Machine Learning Inference at the Extreme Edge,” IEEE Symposium on VLSI
Technology and Circuits (VLSI Technology and Circuits), 2022.

[26] A. O. El-Rayis., “Reconfigurable Architectures for the Next Generation of Mobile Device
Telecommunications Systems. Ph. D. Dissertation,” 2014.

