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1 Introduction 
 
Edge artificial intelligence (AI) starts with edge computing. Edge AI refers to AI algorithms that process locally 
on hardware devices and can process data without any type of connection. This means operations such as data 
acquisition can occur without streaming or storing data in the cloud because of the need for immediate 
response, besides preventing the cloud from being overloaded by data traffic that can easily be 
avoided by following the edge processing approach. This is important because there are an increasing 
number of cases where device data cannot be handled via the cloud. Furthermore, there are some imminent 
advantages of edge processing1. Factory robots, cars, as well as audio processes, for example, need high-
speed processing with minimal latency or power requirements.  

For example, imagine a self-driving car suffering from cloud latency while detecting objects on the road, or 
operating brakes or steering wheels. Any delay in data processing will result in a slower response from the 
vehicle. If the slowdown is such that the vehicle does not respond in time, this could result in an accident.  

In audio processing, sound needs to be processed with minimal possible latency and low power to be able to 
run on headsets and in-ear devices.  

In the specific case of satellite imagery, it is increasingly being used to predict natural disasters 
and to assist immediately after they occur and in dangerous situations such as strategic conflicts 
or illegal activities. Having the right response in the right place at the right time is key to the 
success of these activities. This is achieved by processing the imagery on board the same 
satellites that generate it, thus downloading only useful information or insights to the actor that 
requires it. 

However, for each application use-case, the requirements might be very different as well as the consequences 
of not adhering to those. Therefore, any metric or benchmark must take different factors into account.  

 

1.1 Intro to Chipset metrics and benchmarking 
 
As stated above, although every use-case is different, we will try to define consolidated metrics 
that cover all use-cases and are accepted by all parties involved – although each entity might 
define their own cut-off thresholds for success for each metric and may prioritize each metric 
differently.  
 
A survey of the relevant literature reveals four main dimensions, or “pillars” that are often used to 
characterize and benchmark a given solution and are suitable for our purposes. These are: 
 

• Performance (P) 
o Inference speed on test datasets  
o I/O latency for real-time applications  
o MACs / cycle 

 
1 https://www.datamation.com/edge-computing/pros-cons-edge-computing/ 

 

https://www.datamation.com/edge-computing/pros-cons-edge-computing/
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o Operations per second (OPS) 
o Real-time factor (RTF)  

• Efficiency (E) 
o Average power for inference on test dataset (W) 
o Peak power (W) 
o TOPS/Watts 
o TOPS / mm2 

• Quality (Q) 
o Model accuracy 
o Use-case dependent metric  

▪ Speech Quality 
▪ Sound classification accuracy  
▪ Feature accuracy  

• Size (S) 
o Model size & memory requirements for parameters  

▪ Quantized vs. non-quantized. 
o SW memory  

 
For given (required) application accuracy, often used metrics are (from the computing area), 
energy-efficiency (using either TOPS/Watt, or Joule/Op) and area efficiency (TOPS/mm2). These 
2 can also be combined into energy-area efficiency, taking their product.  
 
Based on the above, it would also be possible to create a single-value metric V as a linear 
combination of those individual pillars:  
 
V = function (P, E, Q, S).  
 
where each user’s priorities on where to put the focus of development can be considered. 
Note, that while linear combinations are a first order approximation of the weighted 
performance, they usually provide a simple and easy-to-understand way for aggregating multiple 
performance dimensions. Furthermore, non-linear combinations in most cases, might be too 
complex to interpret and understand for obtaining the factors’ individual contribution and might 
provide no extra benefit for an overall perception of factor contribution.  
 
Some of the above performance metrics are naturally use-case specific – for example, the real-
time factor is used in audio processing. It is computed as the ratio between processing time of a 
time frame and the hop-size. Thus, if processing on one time frame takes longer than the delay 
between advancing to the next frame, no real-time processing is possible.  
 

1.2 The Convolve project within EU Horizon’s innovation program 
 
The primary aim of this document is to identify and define practical application use-cases from 
various domains that would prove beneficial to be executed on a secure edge processor with 
ultra-low power consumption. These use-cases come from three different companies, covering: 
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• Audio processing (GN Audio, Bosch) 
• Satellite image processing (TASE) 
• Video processing (Vinotion) 

 
The audio processing use-case focuses on enhancing speech quality, suppressing noise and 
audio source tracking in vehicles, while the satellite image processing use-case aims to detect 
and track changes in near real-time. Lastly, the video processing use-case involves video traffic 
analysis for tracking persons and vehicles in real-time. 
 
For each use-case, specific requirements are outlined, and their relevance to Convolve's broader 
goals is discussed. Moreover, the authors of each use-case have provided software code that will 
be stored in a Git repository hosted by TU Eindhoven. This repository can be used as a 
benchmarking tool and a basis for future development.2 
 

2 Overview on Use-cases  
 

2.1 Deep Noise Suppression & Speech Quality Prediction (GN Audio) 
 
Use case title Deep Noise Suppression / Speech Enhancement 

Owner GN Audio  

Other partners 
involved 

Bosch 

Visualization of 
the use case 

 

Use case 
description 

Deep Noise Suppression (DNS) or Speech Enhancement aims to improve the 
quality of both Tx (uplink) and Rx(downlink) speech signals by reducing 
background noise, thereby improving their quality or intelligibility. This is a very 
challenging task, especially due to the vast amount of complex acoustic 
situations that may arise in the real world, such as the presence of an undesired 
speaker (referred to as “jammer”) close to the main user’s microphone. Thus, 
Speech Enhancement can be seen as an umbrella term for more specific 
denoising tasks. It is considered a “hot topic” in the wider communication and 
computer industry, with large companies and academy dedicating massive 
resources to it3 although not necessarily focusing on edge processing.  

 
2 https://gitlab.tue.nl/es/convolve/ 
3 https://arxiv.org/pdf/2202.13288.pdf 
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Use case 
neural network 
models  

Here, we will focus on several models for speech enhancement that have 
received ample citations in recent publications and have been shown to be 
effective for the task. They use a combination of different layers and activation 
operations i.e., convolutional (1D Convolutional, 2D Convolutional), recurrent 
(Long Short-term Memory (LSTM), Gated Recurrent Unit (GRU) and pooling 
operations as well as ReLU, Leaky ReLU and Sigmoidal activations. In the 
following we will provide a short overview of the main characteristics of those 
models.  
 
1. Name: UNet 

a. Inputs: Short-term Fourier Spectrogram (STFT) 
b. Layers: 2D Convolutions, 2D Transposed Convolutions, 2D Pooling  
c. Activations: Leaky ReLU 
d. Skip-connections:  Yes 

 
2. Name: Demucs Denoiser 

a. Inputs: Raw audio waveform 
b. Layers: 1D Convolutions, 1D Transposed Convolutions, Long Short-

Term Memory (LSTM) 
c. Activations: ReLU 
d. Skip-connections: Yes 

 
3. Name: NsNet2 

a. Inputs: Short-term Mel Spectrogram 
b. Layers: Fully connected, Gated Recurrent Units (GRU) 
c. Activations: ReLU, Sigmoidal 
d. Skip-connections: No  

 

Note, that these models and their structures could be combined to even form 
different architectures. For example, NsNet2 consist of mainly recurrent layers 
and could very well benefit from a convolutional layer as input for additional 
effective feature extraction.  
 
Furthermore, several relevant research questions arise from the presented 
architectures. For example, skip connections are memory heavy from a HW 
perspective – could those architectures that use them be modified to perform 
as well without them? Note also, that not all of them must be considered in the 
project.  
 

Statements of 
Needs 

Much better (high-quality speech) and power efficient noise suppression 
running on the edge as part of a Tx processing line before transmission of 
signal. 

CONVOLVE 
objectives 
addressed 

State-of-the-art high-fidelity audio use case running on the edge devices with 
unprecedented power efficiency (Objective 1). Efficiency can and should be 
achieved by dynamic behavior of the models, both on the model level as well as 

 
 

 

http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/2006.12847
http://arxiv.org/abs/2101.09249
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on compiler level (Objective 2). Any updates to model structure, weights or other 
firmware should be performed in a secure and encrypted way without the risk of 
side-channel attacks (Objective 3). 

CONVOLVE 
WPs involved 

WP4, WP5, (WP6) 

Quantified 
baseline at the 
start of the 
project 

As mentioned above we want to assess the proposed models by the following 
performance metrics. Here, we describe the baseline model (Unet) which can 
run on actual hardware and follow-up on the larger models that should run on 
any future chipset.  
 
Here, we will give concrete numbers for one model that has been discussed in 
literature and comes very close to the some of the architectures discussed for 
Convolve purposes.  
 
The numbers are either based on computations from torchinfo or from 
information in literature (see footnote). We will give information on  
 

• Multiply-accumulate per seconds 
• Memory  
• Memory bandwidth  
• Power  
• Power / Mmacs (Million MACs) 
• Latency  

 

This table should be considered as the baseline on which to measure any new 
model deployment on. Note, float16 numbers are taken from the referenced 
paper while int8 numbers are estimated based on basic arithmetic calculations.  
 
The audio examples used for this assessment use the following Digital Signal 
Processing (DSP) parameters:  
 

• Block frame-size: 400 samples (@257 one-sided FFT-bins) 
• Hop-size:  100 samples 

Model  # 
Parameter
s 

MACs 
/ s 
float16 x 
float16 

Memory 
(Parameters) 
float16 

Memory 
BW 
float16 

Power 
@ 0.8 V  

Power 
/ 
Mmacs 

Latency  

MACs 
/ cycle 
float16 x 
float16 

Memory 
(Parameters)  
Int8 

Memory 
BW Int8 

NsNet4 
type 
on 
descri
bed 
target 

0.99 M 43 M  3.95 MB 0.55 MB 
/ sec 

 
66 
mW   

 
~ 1.5 
mW  

 
1.7 
msec     2 

(from 
paper4) 

0.98 MB 0.14 MB 
/ sec 

 
4 https://arxiv.org/abs/2210.07692 

 

https://pypi.org/project/torchinfo/
https://arxiv.org/abs/2210.07692
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• Sampling rate: 16 kHz 
 
In DSP, hop-size refers to the number of samples between consecutive 
analysis frames in a signal processing algorithm. It is typically used in time-
frequency analysis, such as in spectrogram or Mel-spectrogram calculations. 
Note, that numbers will change when other DSP settings are used. Generally, 
one trades latency for compute requirements, smaller Hop-sizes decreasing 
latency but increasing compute requirements.  
 
Regarding use-case specific metrics, with current denoising frameworks 
available relatively high speech quality is achieved, typically Mean-opinion 
scores (MOS) between 3 and 4 for a bandwidth of 8 kHz.  As a reference for our 
claims, we can regard the following figure 15. Here, red gives the baseline for 8 
kHz bandwidth, green gives the full band reference and yellow the respective 
denoiser with a bandwidth extension as a post-processing.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Goals at the 
end of the 
project in 
defined 
metrics  

The following shows similar numbers as for the baseline model but for larger and 
more effective models that could ideally be deployed to a Neural Processing Unit 
(NPU), including operations needed per cycle like the previous table but without 
exact power figures since these models have not been deployed.   

Model  # 
Parameter
s 

MACs / s Memory 
(Parameters) 
Float32 

Memory BW 
Float32 

MACs / cycle 
(min. required) 

Memory 
(Parameters)  
Int8 

Memory BW Int8 

NsNet2 3.6 M 693 M 14.3 MB 5.5 MB/s 
 

> 7 @ 100MHz 3.5 MB 1.4 MB/s 
Demucs 18.8 M 4350 M  75.5 MB 72 MB/s 

 
5 https://pixl.cs.princeton.edu/pubs/Su_2021_BEI/ICASSP2021_Su_Wang_BWE.pdf   

TYPICAL MOS  SCORES  FOR   DENOISING  ALGORITHMS  WITH  AND  WITHOUT  

SUCCESSIVE  BANDWIDTH  EXTENSION.  NUMBERS  BEHIND  THE NAME  INDICATE  

BANDWIDTH.    FROM: BANDWIDTH   EXTENSION   IS  ALL YOU   NEED  

https://pixl.cs.princeton.edu/pubs/Su_2021_BEI/ICASSP2021_Su_Wang_BWE.pdf
https://pixl.cs.princeton.edu/pubs/Su_2021_BEI/index.php
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The audio examples used for this assessment use the following DSP 
parameters:  

• FFT-frame size: 128 samples 
• Frame-hop size: 64 samples 
• Sampling rate: 16 kHz 

 
Note, that these numbers do change when other DSP settings are used. 
Generally, one trades latency for compute requirements, smaller FFT-sizes 
decreasing latency but increasing compute requirements.  
 

Besides this very concrete model-related metrics, we want any future SoC also 
to fulfil the following requirements: latency and real-time factor. Latency is 
defined as the end-to-end latency – from sound input to sound output on any 
defined SoC or SoM. It is important since larger audio latencies yield undesired 
echo and sound coloration effects.  
 
Real-time Factor (RTF) is defined as the ratio between the time for a model to 
process a frame of audio data compared to the iteration of frames through the 
signal – the so-called frame-hop size.   

> 44 @ 
100MHz 

18.9 MB 18 MB/s 

Metric Unit Value 

Performance 
 

I/O latency 
RTF 
MMACs 

 < 2 msec 
< 0.8  
> 4350  

Power Consumption mW / MMACs 
Full-cycle load 

< 0.1 
< 0.5 W  

Memory  MB  >  
Quality VISQOL6 Mean-

opinion score (MOS) 
> 4 

Key HW 
elements 
involved in the 
use case 

• Sufficient memory close to processor(s) as indicated by metrics 
requirements. 

• High memory bandwidth to and from processor(s) 
• Parallel processing pipeline that consisting of multiple processors. 
• Variable clock rate depending on NN load 

Key SW 
elements 
involved in the 
use case 

• All PyTorch convolutional layers need to be supported. 
• All PyTorch recurrent layers need to be supported. 
• PyTorch Dense layers need to be supported. 
• All current PyTorch activation function needs to be supported.  
• Profiler for memory management 
• Profiler for processing management  
• Emulator for simulating SoC “off-line”  
• CUDA support 

 
 
6 https://arxiv.org/pdf/2004.09584 

https://arxiv.org/pdf/2004.09584
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• cuDNN support 
Interactions The HW elements should be optimized to maximally exploit AI SW elements and 

be optimized for a) high-speed data processing bandwidth, b) efficient memory 
access (compute in memory), and c) parallel computing.  
 
Additionally, HW elements should also be optimized for power efficiency to 
minimize energy consumption and reduce costs, especially for larger-scale AI 
applications. Finally, HW elements should be designed to support the specific 
requirements of the AI application, such as image recognition, speech 
enhancement, or autonomous driving, to provide the necessary performance 
and accuracy for the task at hand.  

Security 
requirement(s) 

In general, GNA is not overly concerned about overall lack of privacy or safety 
from the user’s perspective, since no data is stored on the device, and data 
transmission commonly occurs within inherently insecure channels (air 
medium) or channels where security is ensured by the underlying transmission 
protocol (i.e., Bluetooth or other RF).  
 
However, there are two main lines of security aspects GNA is interested in:  
 
1. Protection of intellectual property in form of neural network models 
2. Secure update of firmware and neural network models to the edge device 
 
Here, the protection of intellectual property refers to the protection of the 
specific neural network architecture and specialized data from copying or 
inferring which can be expensive to acquire and train. This can and has been 
threatened by e.g., using reverse engineering techniques.  
 
In general, reverse engineering refers to the process of analysing a product or 
system to understand its design, function, or components. In the context of 
artificial intelligence, reverse engineering7 can be used to extract information 
about the inner workings and design of a neural network model. 
 
One common method of reverse engineering neural networks can be the 
teacher-student method8. In this approach, a large, complex neural network (the 
teacher) is trained on a dataset, and then a smaller, simpler neural network (the 
student) is trained to mimic the behaviour of the teacher network. By examining 
the output of the student network, an attacker can gain insights into the inner 
workings of the teacher network, potentially revealing proprietary information 
about the model’s architecture or training data. 
 
To prevent reverse engineering through the teacher-student method, one 
approach is to introduce noise or other markers to the output of the student 
network, making it more difficult for an attacker to discern useful information. 
Another approach is to use adversarial training, in which the student network is 
trained to resist attempts at reverse engineering by introducing deliberate 
misdirection or obfuscation. 

 
7 https://arxiv.org/abs/1711.01768 
8 https://arxiv.org/abs/1503.02531 

https://arxiv.org/abs/1711.01768
https://arxiv.org/abs/1503.02531
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An additional method of reverse engineering neural networks can be through the 
analysis of their output alone, without knowledge of the underlying architecture 
or training data. For example, an attacker might input a series of carefully 
constructed test cases to the network and analyze its responses to infer 
information about its internal structure or decision-making process. 
 
To mitigate this special type of reverse engineering, one approach could be to 
introduce watermarking9 into the output of the neural network. Watermarking 
involves adding a small, non-noticeable signal to the output of the network that 
can be used to identify the source of the output. This can deter attackers from 
attempting to reverse engineer the network, as the presence of the watermark 
can reveal the actions of the attacker.  
 
Secure firmware updates are referring to the process of updating the software 
that controls the hardware components of an (edge) device, such as a 
smartphone, IoT device or headset in a secure and trusted manner. This is 
important to ensure that the device remains secure and up to date, as 
vulnerabilities or bugs in the firmware could potentially be exploited by 
attackers to gain unauthorized access or cause damage to the (edge) device.  
 
One approach to secure firmware updates is to use encryption to protect the 
update process. This involves encrypting the firmware update using a 
cryptographic key, which is then securely transmitted to the device much the 
same as done for any symmetric and asymmetric encryption schemes.  The 
device uses the key to decrypt and verify the firmware update, ensuring that it 
is authentic and has not been modified during transmission. This would help to 
prevent attackers from intercepting and modifying the firmware update and 
ensures that only authorized updates are installed on the device. 
 
In a similar fashion, neural model updates through encryption involves the use 
of encryption to protect the transmission and storage of updates to neural 
networks, which are commonly used in machine learning applications. As 
before, this is important to prevent attackers from intercepting or tampering 
with the updates, which could lead to degraded performance, security 
vulnerabilities or IP infringements.  
 
One final contemplation to secure firmware or model updates is the potential 
use of homomorphic encryption10.  
 
The main advantage of homomorphic encryption is that it allows computations 
to be performed on encrypted data without first decrypting it. This means that 
sensitive data, e.g., the new firmware, can remain private and secure, even while 
it is being processed and used in computations.  
Potentially, it could even be used for secure AI inference on audio data, allowing 
the model to perform computations on the encrypted data, storing it in 

 
9 A survey of deep neural network watermarking techniques (arxiv.org) 
10 https://homomorphicencryption.org 

 

https://arxiv.org/pdf/2103.09274.pdf
https://homomorphicencryption.org/
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batches/buffers and only perform decryption process on a longer timescale 
than the actual audio processing which could reduce resources for the actual 
decryption process.  
 
However, there might be challenges associated with using homomorphic 
encryption for AI model inference, such as the computational overhead involved 
in performing computations on encrypted data. But advances in the field of 
homomorphic encryption have made the technology increasingly practical, and 
it might become feasible for use in the audio-data domain.  

 
 

Use case 
title 

Speech Quality Prediction 

Owner GN Audio  
Other        
partners 
involved 

N/A 

Visualization 
of the use 
case 

 
 
 
 
 
 
 
  

Use case 
description 

The field of speech quality prediction can be divided into full-reference (also known 
as intrusive), which requires a clean reference signal to compare against, and 
reference-less (also termed non-intrusive), which operates on the given signal only. 
 
While there exist several full-reference metrics based on DSP or perceptual models 
(PESQ, POLQA, VISQOL etc) that correlate nicely with a human-attributed MOS, these 
are often computationally expensive, and it might be beneficial to “approximate” 
them using an optimized ANN-based implementation that can run on an accelerator. 
However, due to the lack of reference signals in real-world scenarios, most of the 
focus will be on reference-less methods. 
Some of the main unintrusive speech quality estimator models in the literature as 
DNSMOS, NISQA, and QualityNet. 
 
DNSMOS is a convolutional model featuring four blocks consisting of 2D convolution, 
ReLU activation, max pooling, and dropout, followed by two dense layers. It is trained 
on a set of 600 noisy speech clips that have been processed through a variety of 
noise-suppression algorithms, whereas the target MOS were gathered through a 
human subjective listening test based on the ITU-T P.808 standard. 
 
Similarly, NISQA comprises a convolutional frame-wise feature extractor, followed 
by a self-attention block to model temporal dependencies, and finally an attentive 
pooling mechanism. This model can be trained to predict both MOS and four 
additional quality dimensions. 

https://www.itu.int/rec/T-REC-P.862
https://www.itu.int/rec/T-REC-P.863
https://arxiv.org/abs/2004.09584
https://arxiv.org/abs/2010.15258
https://arxiv.org/abs/2104.09494
https://arxiv.org/abs/1808.05344
https://arxiv.org/abs/2010.15258
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=P.808
https://arxiv.org/abs/2104.09494
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Finally, QualityNet uses a bidirectional-LSTM block followed by fully connected 
layers predicting frame-wise MOS predictions which are then averaged together to 
provide a global score. To make the model causal, the bidirectional-LSTM blocks can 
be substituted with LSTM layers.  
 
Although new prediction models are constantly being developed, these models 
exemplify the use of three deep learning primitives, namely convolution, attention 
mechanisms, and recurrent units, and thus provide a strong foundation for further 
experiments aimed at reducing their computational footprints in terms of size, 
number of operations, and inference latency. This will be achieved through several 
optimization techniques, including quantization/binarization. 

Statements 
of Needs 

Constant and seamless monitoring of the speech quality serves as the feedback 
metric for any speech enhancement system to react to sudden changes in 
enhancement processing.  

CONVOLVE 
objectives 
addressed 

Running a speech quality predictor constantly in the background requires the model 
to be highly power efficient (Objective 1) and optimally dynamic Objective 2), 
changing processing dependent on the environment. Any updates to model 
structure or weights should be performed in a secure and encrypted way without the 
risk of side-channel attacks (Objective 3).  

CONVOLVE 
WPs 
involved 

WP4, WP5 

Quantified 
baseline at 
the start of 
the project 

As for noise-suppression we mainly focus on following metrics for characterizing 
network performance:  
 

• Multiply-accumulate per seconds 
• Memory footprint 
• Memory bandwidth  
• Power  
• Power / Mmacs (Million MACs) 
• Latency 

 
Here, the info comes again mainly from torchinfo. It was assumed that model 
inference was performed on the same chipset as for the noise-suppression 
examples before. This yielded a 1.5 mW consumption per million macs.  
 
Note, for DNSMOS, the memory bandwidth is significantly higher than for the other 
models, mainly due to the large bandwidth requirements for CNNs.  

https://arxiv.org/abs/1808.05344
https://pypi.org/project/torchinfo/
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Model  # 
Parameters 

MACs 
/ s 
float16 x 
float16 

Memory 
(Parameters) 
float16 

Memory 
BW float16 

Power 
@ 0.8 
V  

Power 
/ 
Mmacs 

Latency  

MACs 
/ cycle 
float16 x 
float16 

Memory 
(Parameters)  
Int8 

Memory 
BW Int8 

DNSMOS 33 K 2.47 
M 

0.13 MB 17 MB  3.7 
mW 

 1.5 
mW 

< 3ms 

0.04 
@ 
100 
MHz 

0.04 MB 4.3 MB 

QualityNet 120 K 5.3 
M 

0.45 MB 5 MB 7.6 
mW 

1.5 
mW 

< 3ms 

     0.11 MB 1.4 MB 
Goals at the 
end of the 
project 

Effective non-intrusive speech quality prediction running seamlessly and very 
power efficiently on the edge for constant monitoring.  
Power requirements should have been decreased by at least a factor of 10 relative 
to the numbers in the above table. 

Key HW 
elements 
involved in 
the use case 

• Sufficient memory close to processor(s) as indicated by metrics 
requirements. 

• High memory bandwidth to and from processor(s) 
• Parallel processing pipeline that consisting of multiple processors. 
• Variable clock rate depending on NN load.  

Key SW 
elements 
involved in 
the use case 

• All PyTorch convolutional layers need to be supported. 
• All PyTorch recurrent layers need to be supported. 
• PyTorch Dense layers need to be supported. 
• All current PyTorch activation function needs to be supported.  
• Profiler for memory management 
• Profiler for processing management  
• Emulator for simulating SoC “off-line”  
• CUDA support 
• cuDNN support 

Interactions The HW elements should be optimized to maximally exploit AI SW elements and be 
optimized for a) high-speed data processing, b) efficient memory access (compute 
in memory), and c) parallel computing.  
 
Additionally, HW elements should also be optimized for power efficiency to minimize 
energy consumption and reduce costs, especially for larger-scale AI applications. 
Finally, HW elements should be designed to support the specific requirements of 
the AI application, such as image recognition, speech enhancement, or autonomous 
driving, to provide the necessary performance and accuracy for the task at hand.  
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2.2 Acoustic Scene Analysis (Bosch) 
 

Use case title Acoustic Scene Analysis 
Owner Robert Bosch GmbH  
Other partners 
involved 

N/A 

Visualization of 
the use case 

  
Use case 
description 

Acoustic scene analysis aims to extract information about the environment 
from the sound signal(s) recorded by a receiver. In the scope of the 
proposed use-case, we focus on typical traffic scenes as recorded by a car 
equipped with microphones. Among others, these scenes include the 
sounds of moving emitters like cars and emergency vehicles, but also 
signals of static (non-moving) sources. Based on this superposition, we aim 
to extract information about the identity and position of different emitters 
of interest.  
 
These environments pose challenging conditions since the underlying 
signals potentially exhibit a high degree of temporal as well as spatial 
overlap and show diverse and complex structures. In addition, different 
signal-to-noise ratios (SNRs), source object as well as signal amplitudes 
need to be tackled which all require robust edge processing approaches to 
the topic of acoustic scene analysis. 

Statements of 
Needs 

The information contained in the recorded acoustic signals has the 
potential to not only augment existing sensory data, but, moreover, 
provides additional and safety critical features in situations where movie or 
comparable data may not be sufficient or even available. Hence, the 
analysis of the acoustic environment in an edge computing scenario is of 
general interest to further enhance autonomous driving. 

Use case neural 
network models 

Within the scope of CONVOLVE, we focus on recurrent neural architectures 
to approach the analysis of acoustic scenes. In that process, we aim to 
investigate the following tasks and associated neural architectures: 
 
 

1. Siren detection 
 
Within this first task, audio recordings of traffic scenes are used to detect 
siren sounds. For that purpose, we consider recurrent architectures to 
predict the presence of siren sounds within the input signal. 
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Here, we exemplarily show a detection network with a single recurrently 
connected hidden layer. The key components of this architecture are: 
 

• an input layer implemented by a Mel-Spectrogram of the audio 
signal, 

• a hidden layer (set of hidden layers) composed of GRUs or LSTMs, 
• and a readout comprising of a single linear unit with sigmoidal 

activation. 
 
The network’s response is evaluated on every time frame of the Mel-
Spectrogram by thresholding the output of the readout unit: In case its 
activation exceeds a threshold of 0.5, the frame is assumed to contain a 
siren signal during inference. For the training of the detection NN, publicly 
available dataset11 can be used. 
 

2. Sound source tracking 
 
Here, a recurrent architecture is tasked to predict the position of 
emergency vehicles in simulated acoustic scenes. For that purpose, a set 
of readout modules is connected in series to the actual recurrent 
architecture. Each readout module comprises of three linear units to 
output distance and angular information of a single source.  

 
11 Asif, M., Usaid, M., Rashid, M., Rajab, T., Hussain, S., & Wasi, S. (2022). Large-scale audio dataset 

for emergency vehicle sirens and road noises. Scientific data, 9(1), 599. 
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In the attached visualization of the network architecture, we omitted 
recurrent connections within the hidden layer for clarity. Note that the 
number of readout modules imposes an upper limit on the number of 
sources that can be tracked simultaneously. The key components of these 
tracking networks are: 
 

• an input layer implemented by a Mel-Spectrogram of multi-channel 
audio signals, 

• a hidden layer composed of either GRUs or LSTMs, 
• a set of readout modules each comprising of three linear units with 

sigmoidal and tanh activation functions to constrain the range of 
the prediction to their physical plausible range. 

 
Due to the lack of applicable tracking data, we draw on data augmentation 
strategies to emulate the sounds of moving sources along pre-defined 
trajectories based on audio recordings and/or simulated signals of 
stationary sources12. 

CONVOLVE 
objectives 
addressed 

Energy efficiency is of central interest for this use case since the total 
power budget available within a car is limited (objective 1). Moreover, a rapid 
adaptation to changing requirements is desired to stay flexible (objective 
2). Having detailed information about emergency vehicles is safety critical 
and hence demands for reliable hardware and security against attacks 
during inference as well as system updates (objective 3). Last, the use case 
of acoustic scene analysis constitutes an ideal smart edge application. 
Here, the events of interest (siren signals) rarely occur which is why smart 
adaptation mechanisms are a promising method to further enhance 
efficiency. 

 
12 Damiano, S., & van Waterschoot, T. (2022). Pyroadacoustics: a Road Acoustics Simulator Based On 

Variable Length Delay Lines. In Proceedings of the 25th International Conference on Digital Audio 

Effects. 
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CONVOLVE WPs 
involved 

The proposed neural architectures are refined within the scope of 
CONVOLVE. Hence, WP4 is tightly involved in this use-case. Further, a close 
interaction with WP2, WP3, WP4, WP5 and WP6 is targeted. 

Quantified 
baseline at the 
start of the 
project 

For both tasks, PyTorch models of the proposed neural architectures are 
available that facilitate a first set of benchmarks and an estimate of the 
computational footprint. Currently, all networks are trained on Mel-
Spectrograms extracted from the raw audio data. In the following we 
evaluate one specific network topology for each of the two presented tasks. 
All reported metrics refer to the processing of a single input (time) frame of 
the Mel-Spectrograms. 
 

1. Siren detection 
 
For the siren detection task, we consider the following parametrization and 
recurrent architecture: 
 

• The input contains a single channel audio signal sampled at 8 kHz. 
• Based on that, a Mel-Spectrogram with 64 channels is calculated 

with a hop length of 100 ms and a window size of 50 ms. While the 
choice of the hop length ensures to meet the throughput 
constraints, the lower window size reduces the computations 
associated with the feature extraction and leaves room for neural 
network calculations, thereby facilitating real-time processing of 
the input data. 

• The actual neural network comprises of a single hidden layer 
composed of 100 GRUs. 

• The activations of the hidden units are forwarded to a single linear 
readout unit with sigmoidal activation function. 

 
It is noteworthy, that there might be further space for optimization by 
reducing the window size to reduce the computational footprint of the 
feature extraction and to allow for more time-consuming neural network 
calculations (e.g., deeper neural networks with larger hidden layers) by 
guaranteeing real-time processing at the same time. However, for the 
current GPU implementation the window size used for the spectrogram 
calculation dominates the total duration spend on the processing of a single 
input frame. 
 

2. Siren Tracking 
 
For the tracking of siren sounds in 2D space, we stick to the following 
parametrization and architecture: 
 

• The input contains four channel audio signals sampled at 16 kHz. 
• Based on that, Mel-Spectrograms with 64 channels for each of the 

raw audio channels are calculated with a window and hop length of 
64 ms. 
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• These features serve as input for a single recurrently connected 
hidden layer composed of 1000 GRUs. 

• Their activation is forwarded to two readout modules, each with 3 
linear units (1 sigmoidal, 2 tanh activations). 

 
Again, the throughput is dominated by the signal processing in the current 
implementation and could potentially be improved by smaller window sizes. 
 
In the table below, we summarize important model details as well as 
performance metrices associated with the NN processing. 
 

Model #Parameter Mult-
Adds 
(M) 

Parameter 
memory 
(MB) 

Metrics 
Performance Throughput 

(frames/s) 
Detector 49 901 0.05 0.2 Acc > 0.95 > 10 
Tracker 3 780 006 3.78 15.13 wMSE > 10 

 
Currently, all parameters and observables are represented by 32-bit 
floating-point values. Since the models are currently available as GPU 
implementation, their power budget is assumed to reside in the range 5-100 
W. The reported throughput values correspond to the duration required to 
evaluate the network for a single time step and the period imposed by the 
window size of the Mel-Spectrogram. 
 
It is noteworthy that the actual value of the performance potentially 
depends on the parametrization of the feature extraction and, i.e., trade-
offs between the spectral resolution and the computational footprint are 
possible for a final hardware implementation. The current values are 
chosen to capture a broad frequency range. At low SNRs, high frequency 
components could be less impacted by road noises and could hence boost 
performance.  

Goals at the end 
of the project 

At the end of the project, we would like to have efficient hardware 
implementations of the proposed models. Further, we aim for a reduction 
of the model sizes by 
 

1. compression techniques like quantization (8-bit int) as well as 
pruning, 

2. binarization and 
3. the implementation of dynNNs. 

 
With these methods, the computational footprint of the presented models 
could potentially be reduced to facilitate an efficient implementation. As 
outlined above, the evaluation of the proposed models is limited by the 
window size used for the Mel-Spectrogram calculation. Hence, our main 
goals concern smart feature extractions as well as the power budget of the 
final implementation. The following table summarizes the goals. 
 

Model Parameter 
memory (MB) 

Metrics 
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Int8 Performance Throughput 
(frames/s) 

Power 
(mW) 

Detector 0.05 Acc > 0.95 > 10 < 100 
Tracker 3.8 wMSE > 100 < 100 

 
It is noteworthy that the above stated parameter memory represents the 
target for conventional compression techniques, assuming an 8-bit integer 
precision as a target. The application of dynNNs has the potential to further 
improve upon these metrics. 

Key HW 
elements 
involved in the 
use case 

• Feature extraction (DSP blocks) 
• Mixed precision 
• Tolerance regarding harsh environments (radiation, vibration, 

temperature, …) 
• Time multiplexing (parallel processing, smart mapping) 
• Adjustable clock frequency depending on input (for dynNN 

applications) 
• Efficient always-on detection 

Key SW 
elements 
involved in the 
use case 

• Signal processing (MelSpectrogram, AmplitudeToDB) 
• Recurrent layers (GRU/LSTM) 
• Linear layers 
• Activation functions (Sigmoidal, Tanh) 
• Model updates 

Interactions 

 

 
 

2.3 On-board Computer Vision (TASE) 
 

Use case title On-board Computer Vision 
Owner Thales Alenia Space España  
Other partners 
involved 

TUE, Vinotion 



D1.1 Initial requirements and use cases 
 

   
  
 

Grant Agreement 101070374          
               Page |  22 

 

Visualization of the 
use case 

 
Use case 
description 

The images generated by Earth Observation (EO) satellites are traditionally 
downlinked to ground for processing and analysis. This causes congestion 
of the communications channel and represents a security breach for 
certain confidential images. The downloading of the images can only take 
place at specific moments of the orbit, then slowing down decision making, 
this delay is even increased sometimes since the analyses are performed 
only by highly experienced experts who are not the decision makers. 
 
Embedded systems have strong restrictions on the availability of resources 
and, therefore, condition the depth of the analysis that can be carried out 
in-place of the captured scenes.  
EO images present a series of peculiarities related to the sensors that 
generate them and the conditions under which they are captured, which 
must be considered during the process of processing the image and which 
are detailed below as they are considered highly relevant for the rest of the 
WPs: 

• They have a large variability, among others, in the number of 
channels, value ranges, size, resolution and intensity, depending on 
the type of sensor generating the data. 

• They have a spatial reference of the captured area called 
georeferentiation and a temporal reference of when the capture 
was made. This information is usually sent within the image as 
attached metadata. 

• They are large, so it is common to use tile processing. It is important 
not to lose the location of the tiles in the full image to be able to 
recover this location information once the processing is finished. 

• They can contain from one to thousands of bands. To monitor the 
processing and make them visible to the human eye, the images 
must be converted at some point to monochrome or RGB 
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representations by assigning individual bands or combinations of 
bands to the destination channels of the image. This visualization 
has its own problems associated with it (dark images, contrast 
stretching, radiometric and geometric corrections, speckle 
noise,…).  

Use case neural 
network models  

Convolutional Neural Networks (CNN) has been used in Thales Alenia Space 
for performing computer vision tasks applied to satellite imagery both in 
ground software products and embedded experimentation. 
 
Very deep backbones, usually pre-trained on large datasets like the general 
ImageNet or the space-oriented dataset called SpaceNet, are typically 
specialized on specific tasks using the available training data. Due to the 
reduced datasets in real problems, it is usually hard to train models from 
scratch thus transfer learning is a commonly used to bypass this limitation. 
From the main computer vision tasks (image classification, object 
detection semantic segmentation and instance segmentation) TAS activity 
has been focused on object detection and semantic segmentation as main 
tasks but in some use cases, multiple tasks are combined to filter the 
scenes and simplify the achievement of the main task. 
 
Object detection consists of detecting objects in an image and their spatial 
location within the image. Bounding boxes (rectangles) are used to delimit 
the object shape. 
 
In the object detection task, the algorithms are usually classified in two-
step and one-step methods. The two-step algorithms use two models, one 
for extracting regions of interest and a second model for classifying and 
refining the localization of the objects. On the other hand, one-step 
algorithms use only one model for localizing and classifying the objects in 
an image in just one pass. 
 
Both two-step methods like Faster R-CNN[1] and Mask R-CNN[2] and one-
step methods like YoloV2[3] have been used to achieve the task in 3-band 
raster images generated from multispectral and synthetic aperture radar 
(SAR) imagery and in single band images generated from SAR sensors. 
Semantic segmentation task consists of classifying each pixel in an image 
from a predefined set of classes. Typically, each class is assigned a color, 
and therefore replacing the pixel value with the color of the class produces 
a new image that represents the results.  
 
In the semantic segmentation task, DeepLabV3[4] and BiSeNet V2[5] models 
have been used in 3-band images (RGB combination among others), 
generated from high resolution multispectral imagery. 

Statements of 
Needs 

The present supply chain: 
• Downloads all imagery (raw data) taken without discriminating 

whether it is potentially useful. 
• Involves latencies of hours from the time the raw data is obtained at 

the satellite sensor until the end user is aware of the valuable data. 

https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=es&rs=en%2DUS&wopisrc=https%3A%2F%2Ftuenl.sharepoint.com%2Fsites%2FULPEUprojectproposal%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F38d747c4ecc548d2b56d5ee5e7e60baf&wdenableroaming=1&mscc=1&hid=DDDBA0A0-20FA-6000-487C-AB38F9044108&wdorigin=AuthPrompt&jsapi=1&jsapiver=v1&newsession=1&corrid=7b3337dc-6557-4109-950c-3666f3280a6f&usid=7b3337dc-6557-4109-950c-3666f3280a6f&sftc=1&cac=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Normal&ctp=LeastProtected#_ftn1
https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=es&rs=en%2DUS&wopisrc=https%3A%2F%2Ftuenl.sharepoint.com%2Fsites%2FULPEUprojectproposal%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F38d747c4ecc548d2b56d5ee5e7e60baf&wdenableroaming=1&mscc=1&hid=DDDBA0A0-20FA-6000-487C-AB38F9044108&wdorigin=AuthPrompt&jsapi=1&jsapiver=v1&newsession=1&corrid=7b3337dc-6557-4109-950c-3666f3280a6f&usid=7b3337dc-6557-4109-950c-3666f3280a6f&sftc=1&cac=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Normal&ctp=LeastProtected#_ftn2
https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=es&rs=en%2DUS&wopisrc=https%3A%2F%2Ftuenl.sharepoint.com%2Fsites%2FULPEUprojectproposal%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F38d747c4ecc548d2b56d5ee5e7e60baf&wdenableroaming=1&mscc=1&hid=DDDBA0A0-20FA-6000-487C-AB38F9044108&wdorigin=AuthPrompt&jsapi=1&jsapiver=v1&newsession=1&corrid=7b3337dc-6557-4109-950c-3666f3280a6f&usid=7b3337dc-6557-4109-950c-3666f3280a6f&sftc=1&cac=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Normal&ctp=LeastProtected#_ftn3
https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=es&rs=en%2DUS&wopisrc=https%3A%2F%2Ftuenl.sharepoint.com%2Fsites%2FULPEUprojectproposal%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F38d747c4ecc548d2b56d5ee5e7e60baf&wdenableroaming=1&mscc=1&hid=DDDBA0A0-20FA-6000-487C-AB38F9044108&wdorigin=AuthPrompt&jsapi=1&jsapiver=v1&newsession=1&corrid=7b3337dc-6557-4109-950c-3666f3280a6f&usid=7b3337dc-6557-4109-950c-3666f3280a6f&sftc=1&cac=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Normal&ctp=LeastProtected#_ftn4
https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=es&rs=en%2DUS&wopisrc=https%3A%2F%2Ftuenl.sharepoint.com%2Fsites%2FULPEUprojectproposal%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F38d747c4ecc548d2b56d5ee5e7e60baf&wdenableroaming=1&mscc=1&hid=DDDBA0A0-20FA-6000-487C-AB38F9044108&wdorigin=AuthPrompt&jsapi=1&jsapiver=v1&newsession=1&corrid=7b3337dc-6557-4109-950c-3666f3280a6f&usid=7b3337dc-6557-4109-950c-3666f3280a6f&sftc=1&cac=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Normal&ctp=LeastProtected#_ftn5
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• Requires specific functional blocks designed specifically for each 
mission. 

• Potential security vulnerabilities when downloading raw data from 
imagery that could be compromised or modified (defense. 
Cadastres, asset tracking,). 

To build the future supply chain, it is necessary: 
• Download only the information useful to the end user. 
• Make valuable information available to the end user in a few 

minutes. 
• Have a generic architecture independent of the mission. 
• If only the result (the inference) is downloaded, it is more difficult to 

detect its usefulness. If an enhanced image (value-added product) 
is downloaded, the security gap remains the same and would need 
to be improved. 

• Added to this is the need to ensure the integrity of the processing 
SW installed on board and to prevent potential malware from being 
uploaded from the ground. 

CONVOLVE 
objectives 
addressed 

In an environment as hostile as space and where information must 
inevitably travel through an air channel to ground, the security and reliability 
of the on-board systems is crucially important. The integrity of the SW 
being deployed on-board shall be always prevented, if needed including 
dedicated mechanisms to cover this (Objective 3).  
 
In addition, the power available on a satellite is limited and managed to keep 
all systems alive throughout the life of the mission as they age. In addition, 
the size of the images to be processed will make it inevitable to have several 
devices working in parallel, so it is essential that their consumption be kept 
to a minimum (Objective 1). 
 
Finally, new trends and players in the space market are setting much 
shorter design and development times, which must be matched or 
improved to stay in the competition (Objective 2). 

CONVOLVE WPs 
involved 

WP2, WP3, WP4 & WP5 

Quantified baseline 
at the start of the 
project 

Current processing is done sequentially in a pipeline fashion with 
containerized steps. 
 
Images are processed using EO libraries which uses exclusively CPU and 
RAM memory requiring at least 8GB of dedicated RAM to transform the 
images. 
 
Computer vision stages that use deep learning techniques mainly use GPU 
resources. Due to the depth of the CNN used and context required, 4GB to 
8GB of the GPU memory are used currently by the applications (depending 
on the computer vision task). 
 
The following GPUs have been used so far:  

• Nvidia Tesla M60 (Azure NVv3-series VMs): 
o Memory: 8GB 
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o Max power Consumption: 300W 
• Nvidia Quadro RTX 4000 

o Memory: 8GB 
o Max power consumption: 160W  

Goals at the end of 
the project in 
defined metrics  

• Design capable of supporting different neural networks more than 
50 layers deep. 

• Power consumption objective: 
o < 0,1 mW/MMACs 
o Maximum dissipation compatible with a flight design < 20 W 

(per device, SoC). 
o At board level, maximum power dissipation < 50 W (with as 

many SoCs working in parallel as possible). 

Key HW elements 
involved in the use 
case 

• Enough memory close to processor(s). 
• High memory bandwidth to and from processor(s) 
• Parallel processing pipeline that consisting of multiple processors. 
• Variable clock rate depending on NN load 
• Radiation tolerant components 
• High junction temperature range (-50ºC, 150ºC) 

 
Some specific algorithms of the use case has been tested on the following  
HW platforms: 

• Satellite space grade Xilinx Kintex Ultrascale XCKU115 2: 
• Up to 5,520 DSPs and 75.9 Mb of embedded RAM 
• Alpha Data ADM PCIE 8K5 (2 DDR4 2400MT/s) 
• Versal AI Core Series VCK190 

Key SW elements 
involved in the use 
case 

• All convolutional layers need to be supported. 
• All recurrent layers need to be supported. 
• Dense layers need to be supported. 
• All current activation function needs to be supported.  
• No restriction on ML library but PyTorch is preferred 
• Full tool ecosystem is provided for easy deployment on SoC. 
• Emulator for simulating SoC “off-line”  
• CUDA support 
• cuDNN support 

Interactions 
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[1] [1506.01497] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 
(arxiv.org) 
[2] [1703.06870] Mask R-CNN (arxiv.org) 
[3] [1612.08242v1] YOLO9000: Better, Faster, Stronger (arxiv.org) 
[4] [1706.05587v3] Rethinking Atrous Convolution for Semantic Image Segmentation (arxiv.org) 
[5] [2004.02147v1] BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic 
Segmentation (arxiv.org) 

 
2.4 Video-based Traffic Analysis (Vinotion) 
 

Use case title Video-based traffic analysis 
Owner ViNotion 
Other partners 
involved 

TU/e, Thales 

Visualization of the 
use case 

 
Use case description ViSense is edge-based video analysis system that reads, analyzes and 

processes real-time video from a standard CCTV/RGB camera (24/7 
measurements) for surveillance, traffic management, incident 
detection, crowd management and various other traffic cases. By 
utilizing artificial intelligence (AI) software, ViSense makes it possible 
to register movements of all objects including pedestrians, bicycles 
and vehicles. This technology provides a large amount of information 
about the objects with high accuracy up to 98% in streets of 20 m 
wide and squares up to 500 m2 with a single camera sensor. For 
example, ViSense can provide insight into densities, paths travelled 
from objects (trajectories), heatmaps, row length, statistics of near-
incidents, etc. 

Statements of Needs A ViSense system can be deployed for large scale systems like 
highways and train stations, comprising more than 1000 cameras. 
Using AI for automatic interpretation, requires significant 
computational power and should be performed on the edge for 
several reasons: 1) it provided anonymization near the sensor and 
protects privacy; 2) it does not form a computational bottleneck in 

https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=es&rs=en%2DUS&wopisrc=https%3A%2F%2Ftuenl.sharepoint.com%2Fsites%2FULPEUprojectproposal%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F38d747c4ecc548d2b56d5ee5e7e60baf&wdenableroaming=1&mscc=1&hid=DDDBA0A0-20FA-6000-487C-AB38F9044108&wdorigin=AuthPrompt&jsapi=1&jsapiver=v1&newsession=1&corrid=7b3337dc-6557-4109-950c-3666f3280a6f&usid=7b3337dc-6557-4109-950c-3666f3280a6f&sftc=1&cac=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Normal&ctp=LeastProtected#_ftnref1
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=es&rs=en%2DUS&wopisrc=https%3A%2F%2Ftuenl.sharepoint.com%2Fsites%2FULPEUprojectproposal%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F38d747c4ecc548d2b56d5ee5e7e60baf&wdenableroaming=1&mscc=1&hid=DDDBA0A0-20FA-6000-487C-AB38F9044108&wdorigin=AuthPrompt&jsapi=1&jsapiver=v1&newsession=1&corrid=7b3337dc-6557-4109-950c-3666f3280a6f&usid=7b3337dc-6557-4109-950c-3666f3280a6f&sftc=1&cac=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Normal&ctp=LeastProtected#_ftnref2
https://arxiv.org/abs/1703.06870
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the cloud where the sensor data is used for traffic control or crowd 
control; 3) it preserves communication bandwidth; 4)  It reduces a 
single-point-for-failure due to the distributed nature of the 
processing.  

CONVOLVE objectives 
addressed 

Obj1: Energy efficient mechanisms also support Obj4 on Smart edge 
processing enabling mechanisms. Compact, cost-efficient and 
advanced visual interpretation requires a CONVOLVE approach. For 
privacy protection and secure traffic control, also Obj3 (security and 
reliability mechanisms) is important. 

CONVOLVE WPs 
involved 

WP3 and WP4 are important to translate the user requirements to 
system requirements. As the development of AI technologies and 
their exploitation are advancing rapidly, it is important to create 
systems with a high amount of flexibility for the programmer and easy 
to use tools allowing high-level programming languages to be 
mapped to the underlying hardware while abstracting from the 
complexity.  

Quantified baseline at 
the start of the project 

We have a product exploiting ANN on a Nvidia Jetson TX2 platform. 
The firmware contains a pipeline of processing functions and needs 
an integral approach for efficiency improvements. The building 
blocks consist of video decoding, ANN for object detection and 
classification, tracking, colour conversion, scaling, image 
stabilization, object blurring, a webserver for webservices and 
dashboarding, etc. 
 
The product runs 1 full HD video stream with 2 x 512x512 ANN template 
at 4 fps including tracking at 30 fps with more than 100 objects on a 
TX2 at typical 15 W power. Most of the resources of the TX2 system 
are currently reserved for a single ANN performing object detection 
and classification (mainly GPU resources) and for a tracking algorithm 
(combination of GPU and CPU resources). Video decoding is currently 
offloaded to a dedicated on-board hardware. 

Goals at the end of the 
project 

The future of ULP AI processing and deep learning is inevitable. We 
want significant power-efficiency improvement to reduce costs of 
the power supply and a passive thermal design and allow a week of 
operation on a 0,5 kg battery operated system. Such a low power 
design would also enable in-camera AI processing, since the power 
budget of PoE cameras is limited. 

Key HW elements 
involved in the use 
case 

Current HW elements are: 
• 256-core NVIDIA Pascal™ GPU architecture with 256 NVIDIA 

CUDA cores 
• Dual-Core NVIDIA Denver 2 64-Bit CPU 

Quad-Core ARM® Cortex®-A57 MPCore 
• 8GB 128-bit LPDDR4 Memory 

1866 MHx - 59.7 GB/s 
• 32GB eMMC 5.1 
• Accelerators for H264 encoding and decoding. 
• ~ 20 Watts 
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Key SW elements 
involved in the use 
case 

Gstreamer for video input reading 
Proprietary component-based framework (C++) 
Jetpack 4.6, CUDA/cuDNN, TensorRT for ANN deployment, OpenCv, 
etc. 
Typical ANN architectures that are used are: SSD and YOLO 
(v4/v6/v7). 

Interactions 

 
 

 

3 Individual Requirements (See here)  
 

3.1 Vinotion  
 

ID 
Requirement (short and as specific as 
possible) 

Dependency 
(ID) 

Complexi
ty 
(1 High, 3 
Low) 

Priority 
(1 High, 
3 Low) 

Architectural requirements 

A1  Allow a diverse set of processing blocks in 
a pipeline: e.g., video coding, color 
conversion, detection, tracking, projective 
transformations, etc. to facilitate 
heterogenous processing with highly 
efficient inter-communication 

 2 1 

A2 Low power per operation: For small 
product design without dissipation 
concerns and allowing complex 
applications 

 2 2 

A3 The most important hardware interfaces 
are 1Gbit Ethernet, UART, OTG, USB, 
HDMI, M2 slot, Mini PCIe, reset 

A1 3 1 

A4 Accelerators for video encoding / decoding A1 3 1 

A5 GPU for rendering A1 3 1 

A6 Deep learning accelerator A1 2 1 
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A7 Compatible with open DNN frameworks 
(Pytorch desired) 

A1, A6 2 2 

A8 Compliant with Yocto   2 2 

A9 At least 16 GB RAM and 32 GB eMMC A1, A4, A5, 
A6 

3 2 

A10 Ambient temperature –30 to +60 deg   3 

Behavioural requirements 

B1 The system should host a webserver to 
give full freedom of implementing 
interactions 

A1  1 

B2 Boot on Power,  A1  1 

B3 Scalability in Power usage if not all 
compute resources are used or needed 

 1 2 

Functional requirements 

F1 Real-time video processing A4   

F2 Low latency to enable traffic control    

F3 Run several NN models simultaneously   2 1 

F4 Data security using Trusted Platform 
Module or alternative 

   

Non-Functional requirements 

NF1 Flexibility for large variety of video sensors 
types: Frame-rates, resolutions, 8 – 16 
bits, number of colour channels, etc 

 3 2 

NF2 Future proof: new algorithms including AI 
are advancing in a rapid pace 

 1 2 

NF3 Tooling for rapid application development 
in software 

A1 1 2 

 
3.2 GN Audio 
 

ID 
Requirement (short and as specific as 
possible) 

Dependency 
(ID) 

Complexity 
(1 High, 3 
Low) 

Priority 
(1 High, 
3 Low) 

Architectural requirements 

A1  Support a flexible DSP pipeline – STFT 
and Mel transformations could even be 
accelerated. Raw signal inputs should be 
supported as well optionally. 

 2 1 

A2 Low power operations in both DSP and 
accelerator pipeline for complex NN model 
deployment 

A1 2 1 

A3 A “lambda” layer – wraps arbitrary 
processing into NN layer  

A1, A2 1 3 

Behavioural requirements 

B1 Feedback of speech quality assessment to 
user so the user can intervene manually 

 3 3 
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B2 Knob for changing the amount of 
(denoising) processing taking place to 
empower individual preferences  

 3 3 

Functional requirements 

F1 Low latency for always retaining an RTF < 
1 

A1   

F2 Seamless dynamism – switching between 
models must be imperceptible  

 2 1 

F3 Run several NN models simultaneously   2 1 

Non-Functional requirements 

NF1 Multi-channel inputs  NF2 2 3 

NF2 Multi-modal inputs – i.e., sound, vibration 
sensors, PPG) 

 1 3 

NF3 Rapid mapping of applications and quick 
development iterations  

A1 2 1 

 
 

3.3 Bosch  
 

ID Requirement (short and as specific as possible) 
Dependency 
(ID) 

Complexity 
(1 High, 3 
Low) 

Priority 
(1 High, 
3 Low) 

Architectural requirements 

A1  Support for streaming multi-channel raw 
audio signals 

 2 1 

A2 DSP A1 2 1 

A3 Composable structure A1, A2 1 1 

A4 Low power operation A1, A2, A3 1 1 

Behavioural requirements 

B1 Channelling the prediction to other sub-
systems 

A3, A4 3 1 

Functional requirements 

F1 Model switching from detector to tracker 
network if siren is detected and 
communication of predictions 

B1, NF2 1 1 

Non-Functional requirements 

NF1 Always-on A4 2 1 

NF2 Fast and dynamic reconfiguration (model 
switching, parametrization, …) 

A1, A2, A2, 
F1 

1 1 

 
3.4 TASE 
 

ID 
Requirement (short and as specific as 
possible) 

Dependency 
(ID) 

Complexity 
(1 High, 3 
Low) 

Priority 
(1 High, 
3 Low) 

Architectural requirements 
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A1  Due to the difficulty of accessing hardware, 
reconfigurable systems are always desired. 

F1 2 2 

A2 Fully scalable architecture (depending on 
the type of mission, memory and 
processing requirements vary greatly) 

 2 1 

A3 
 

Support of a wide range of layers 
(convolutional, dense, sequential,…), 
activation functions. 

A4, A7, A8 2 2 

A4 Compatible with open DNN frameworks 
(PyTorch desired) 

A3, A7, A8 2 2 

A5 
 

Design compatible with space-grade 
components 

 3 1 

A6 Self-healing design for maximum life 
extension (desirable up to 15 years) 

 1 3 

A7 Compatible with standard light Operating 
Systems 

A3, A4 2 2 

A8 Storage is a main driver in the design due 
to the need of processing big volumes of 
data (images in the order of GB) 

A3, A4 3 2 

Behavioural requirements 

B1 A confident sovereign solution (without 
cyber risks, embedded application integrity) 

 3 1 

Functional requirements 

F1 Possible continuous integration of HW/SW 
improvements and new features. 

A1 2 1 

F2 Model agnostic solution  3 1 

F3 Possibility to orchestrate processing steps 
(containerized if possible) 

 3 1 

Non-Functional requirements 

NF1 Allow maintaining the highest level of 
technicality during the satellite lifetime 

 2 3 

NF2 Highly flexible (compatible with a large type 
of sensors) 

 3 2 

NF3 Processing capability shall allow to execute 
the computer visions tasks described 
above (table 3.3) 

 2 1 

NF4 The integrity of the SW being deployed on-
board shall be prevented at all times. 

B1 1 1 

 
 

4 Conclusion  
 
In this document, we define consolidated metrics that cover all use-cases and are used by all 
parties involved. The four main dimensions or "pillars" that are often used to characterize and 
benchmark a given solution include Performance, Efficiency, Power Consumption, Quality, and 
Size.  



D1.1 Initial requirements and use cases 
 

   
  
 

Grant Agreement 101070374          
               Page |  32 

 

These metrics can be combined into a single-value metric, V, which reflects each user's 
priorities on where to put the focus of development.  
 
The use-cases presented in this document highlight the specific requirements for audio 
processing, satellite image processing, and video processing, and how they relate to the overall 
objectives of Convolve which are:  
 

1 Power efficiency 
2 Dynamism of models processing pipeline 
3 Security & Privacy 

 
Furthermore, based on the use-cases presented and the consolidated metrics defined, we 
formulated concrete requirements that will serve as a working baseline for U/C optimization 
and for the remaining work-packages.  
 
These requirements will consider the specific needs of each use-case and the priorities of the 
involved parties. By doing so, we aim to ensure that the developed solution meets the necessary 
performance, efficiency, power consumption, quality, and size requirements for each use-case. 
 

5 Description of requirement categories 
 

• Architectural requirements: Are those requirements which have a measurable effect on the 
system’s architecture (they can be SW and HW). Some examples could be: an specific 
database (i.e. my system needs an oracle data base), there cannot be connections outside my 
local system, my system need Ethernet connection, it should run on a FPGA, etc.  
 

• Behavioural requirements: these requirements define how the system’s users (can be human 
beings or other systems) interact with the current system. Some examples could be: A knob 
is needed to controlled the different modes of my system, a touchscreen that allows user’s to 
re arrange elements, the system should generate X output if receives an Y input, the motor 
must stop if receives an-input from Z. 
 

• Functional requirements: define in a top-level way what you want your system to 
do.  Example: if Y then Z, my system will show an image on a screen, etc 
 

• Non-Functional requirements: are those requirements which defines how the system should 
work, it is related to the quality of the system. Examples: My system should not be on hold for 
more than 0.1 second, my system should be able to stop if, etc.  
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